Pregunta
upstudy study bank question image url

Given: \( f(x)=\frac{s}{x-2}+1 \) 10.1 Write down the equations of the asymptotes of \( f \). 10.2 Determatie coordinates of \( B \), the \( x \)-intercept of \( f \). 10.3 Write down the domain of \( g \) If \( g(x)=f(x+1) \). 10.4 One of the axes of symmetry of \( f \) is an increasing function. Write down the equation of this axis of symmetry.

Ask by Colon Chen. in South Africa
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

10.1: Vertical Asymptote: \( x = 2 \), Horizontal Asymptote: \( y = 1 \) 10.2: \( B(2 - s, 0) \) 10.3: Domain of \( g \): All real numbers except \( x = 1 \) 10.4: Axis of Symmetry: \( y = 1 \)

Solución

Let's solve the problem step by step. ### 10.1: Write down the equations of the asymptotes of \( f \). The function given is \[ f(x) = \frac{s}{x-2} + 1 \] **Vertical Asymptote:** A vertical asymptote occurs where the function is undefined, which happens when the denominator is zero. Setting the denominator to zero: \[ x - 2 = 0 \implies x = 2 \] Thus, the equation of the vertical asymptote is: \[ x = 2 \] **Horizontal Asymptote:** To find the horizontal asymptote, we look at the behavior of \( f(x) \) as \( x \) approaches infinity. The term \( \frac{s}{x-2} \) approaches 0 as \( x \) goes to infinity. Therefore, the horizontal asymptote is: \[ y = 1 \] ### Summary of Asymptotes: - Vertical Asymptote: \( x = 2 \) - Horizontal Asymptote: \( y = 1 \) --- ### 10.2: Determine coordinates of \( B \), the \( x \)-intercept of \( f \). The \( x \)-intercept occurs when \( f(x) = 0 \). Setting the function equal to zero: \[ 0 = \frac{s}{x-2} + 1 \] Rearranging gives: \[ \frac{s}{x-2} = -1 \] Multiplying both sides by \( x - 2 \) (noting that \( x \neq 2 \)): \[ s = - (x - 2) \] Solving for \( x \): \[ s = -x + 2 \implies x = 2 - s \] Thus, the coordinates of \( B \) are: \[ B(2 - s, 0) \] --- ### 10.3: Write down the domain of \( g \) if \( g(x) = f(x + 1) \). To find the domain of \( g(x) \), we need to determine where \( f(x + 1) \) is defined. Substituting \( x + 1 \) into the function: \[ g(x) = f(x + 1) = \frac{s}{(x + 1) - 2} + 1 = \frac{s}{x - 1} + 1 \] The function \( g(x) \) is undefined when the denominator is zero: \[ x - 1 = 0 \implies x = 1 \] Thus, the domain of \( g \) is all real numbers except \( x = 1 \): \[ \text{Domain of } g: (-\infty, 1) \cup (1, \infty) \] --- ### 10.4: One of the axes of symmetry of \( f \) is an increasing function. Write down the equation of this axis of symmetry. The function \( f(x) \) is a rational function, and its axis of symmetry can be found by examining the vertical line that bisects the function. For rational functions of the form \( \frac{s}{x - a} + b \), the axis of symmetry is typically the vertical line through the \( x \)-coordinate of the vertical asymptote. Since the vertical asymptote is at \( x = 2 \), the axis of symmetry is: \[ x = 2 \] However, since the problem states that one of the axes of symmetry is an increasing function, we can also consider the symmetry about the horizontal asymptote. The function is symmetric about the line \( y = 1 \) as well. Thus, the equation of the axis of symmetry that is an increasing function is: \[ y = 1 \] ### Summary of Answers: - 10.1: Vertical Asymptote: \( x = 2 \), Horizontal Asymptote: \( y = 1 \) - 10.2: Coordinates of \( B \): \( (2 - s, 0) \) - 10.3: Domain of \( g \): \( (-\infty, 1) \cup (1, \infty) \) - 10.4: Equation of the axis of symmetry: \( y = 1 \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

The function \( f(x) = \frac{s}{x-2} + 1 \) has a vertical asymptote whenever the denominator equals zero, which occurs at \( x = 2 \). This means that the vertical asymptote is the line \( x = 2 \). Additionally, as \( x \) approaches infinity or negative infinity, \( f(x) \) approaches 1, leading to a horizontal asymptote at \( y = 1 \). To find the \( x \)-intercept \( B \), we set \( f(x) = 0 \): \[ 0 = \frac{s}{x-2} + 1 \Rightarrow \frac{s}{x-2} = -1 \Rightarrow s = -(x - 2) \Rightarrow x = 2 + s. \] Therefore, the coordinates of the \( x \)-intercept \( B \) are \( (2+s, 0) \). For the domain of \( g(x) = f(x+1) \), we substitute \( x + 1 \) into the function, which modifies the vertical asymptote to \( x + 1 = 2 \) or \( x = 1 \). Hence, the domain of \( g \) is all real numbers except \( x = 1 \), or \( (-\infty, 1) \cup (1, \infty) \). Since \( f(x) \) has the form of a hyperbola, its axes of symmetry can be found from its behavior. The axis of symmetry for hyperbolas is often related to \( x = 2 \), but an increasing function in this case occurs around the transformation of the \( y \) values. Thus, the equation of the increasing axis of symmetry can be derived as \( y = x - 1 \).

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad