Responder
Here are the simplified results:
- **3a)** \(8^{12}\)
- **3b)** \(9^{48}\)
- **3c)** \(a^{15}\)
- **3d)** \(p^{4}\)
- **3e)** \(2a^{30}\)
- **3f)** \(9y^{12}\)
- **4a)** \(665\)
- **4b)** \(5\)
- **4c)** \(21\)
- **4d)** \(27\)
- **4e)** \(0\)
- **4f)** \(6a^{5}\)
- **5a)** \(27x^{6}\)
- **5b)** \(y^{16}\)
Solución
Simplify the expression by following steps:
- step0: Solution:
\(\left(a^{5}\right)^{3}\)
- step1: Multiply the exponents:
\(a^{5\times 3}\)
- step2: Multiply the numbers:
\(a^{15}\)
Calculate or simplify the expression \( 3*a^2*2*a^3 \).
Simplify the expression by following steps:
- step0: Solution:
\(3a^{2}\times 2a^{3}\)
- step1: Multiply the terms:
\(6a^{2}\times a^{3}\)
- step2: Multiply the terms:
\(6a^{2+3}\)
- step3: Add the numbers:
\(6a^{5}\)
Calculate or simplify the expression \( (8^6)^2 \).
Calculate the value by following steps:
- step0: Calculate:
\(\left(8^{6}\right)^{2}\)
- step1: Multiply the exponents:
\(8^{6\times 2}\)
- step2: Multiply the numbers:
\(8^{12}\)
Calculate or simplify the expression \( (9^12)^4 \).
Calculate the value by following steps:
- step0: Calculate:
\(\left(9^{12}\right)^{4}\)
- step1: Multiply the exponents:
\(9^{12\times 4}\)
- step2: Multiply the numbers:
\(9^{48}\)
Calculate or simplify the expression \( (p^2)^2 \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(p^{2}\right)^{2}\)
- step1: Multiply the exponents:
\(p^{2\times 2}\)
- step2: Multiply the numbers:
\(p^{4}\)
Calculate or simplify the expression \( 3^4/3^3+\sqrt(8) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{3^{4}}{3^{3}}+\sqrt{8}\)
- step1: Multiply by \(a^{-n}:\)
\(3^{4}\times 3^{-3}+\sqrt{8}\)
- step2: Simplify the root:
\(3^{4}\times 3^{-3}+2\sqrt{2}\)
- step3: Multiply the numbers:
\(3+2\sqrt{2}\)
Calculate or simplify the expression \( 2*(a^10)^3 \).
Simplify the expression by following steps:
- step0: Solution:
\(2\left(a^{10}\right)^{3}\)
- step1: Multiply the exponents:
\(2a^{10\times 3}\)
- step2: Multiply the numbers:
\(2a^{30}\)
Calculate or simplify the expression \( 3^2*(y^4)^3 \).
Simplify the expression by following steps:
- step0: Solution:
\(3^{2}\left(y^{4}\right)^{3}\)
- step1: Multiply the exponents:
\(3^{2}y^{4\times 3}\)
- step2: Multiply the numbers:
\(3^{2}y^{12}\)
- step3: Evaluate the power:
\(9y^{12}\)
Calculate or simplify the expression \( (-4)^3+(3^2)^3 \).
Calculate the value by following steps:
- step0: Calculate:
\(\left(-4\right)^{3}+\left(3^{2}\right)^{3}\)
- step1: Multiply the exponents:
\(\left(-4\right)^{3}+3^{2\times 3}\)
- step2: Multiply the numbers:
\(\left(-4\right)^{3}+3^{6}\)
- step3: Simplify:
\(-4^{3}+3^{6}\)
- step4: Evaluate the power:
\(-64+3^{6}\)
- step5: Evaluate the power:
\(-64+729\)
- step6: Add the numbers:
\(665\)
Calculate or simplify the expression \( 4^2+4^1+4^0 \).
Calculate the value by following steps:
- step0: Calculate:
\(4^{2}+4^{1}+4^{0}\)
- step1: Evaluate the power:
\(4^{2}+4^{1}+1\)
- step2: Evaluate the power:
\(4^{2}+4+1\)
- step3: Evaluate the power:
\(16+4+1\)
- step4: Add the numbers:
\(21\)
Calculate or simplify the expression \( 3^10/3^5/3^2 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\frac{3^{10}}{3^{5}}}{3^{2}}\)
- step1: Multiply by \(a^{-n}:\)
\(\frac{3^{10}\times 3^{-5}}{3^{2}}\)
- step2: Multiply by \(a^{-n}:\)
\(3^{10}\times 3^{-5}\times 3^{-2}\)
- step3: Multiply the terms:
\(3^{10-5-2}\)
- step4: Subtract the numbers:
\(3^{3}\)
- step5: Evaluate the power:
\(27\)
Calculate or simplify the expression \( (3*x^2)^3 \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(3x^{2}\right)^{3}\)
- step1: Use the properties of exponents:
\(3^{3}\left(x^{2}\right)^{3}\)
- step2: Evaluate the power:
\(27x^{6}\)
Calculate or simplify the expression \( 10^2*10^1*10^0-10^3 \).
Calculate the value by following steps:
- step0: Calculate:
\(10^{2}\times 10^{1}\times 10^{0}-10^{3}\)
- step1: Evaluate the power:
\(10^{2}\times 10^{1}\times 1-10^{3}\)
- step2: Evaluate the power:
\(10^{2}\times 10\times 1-10^{3}\)
- step3: Multiply the terms:
\(10^{3}-10^{3}\)
- step4: Subtract the terms:
\(0\)
Calculate or simplify the expression \( (y^11/y^3)^2 \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(\frac{y^{11}}{y^{3}}\right)^{2}\)
- step1: Divide the terms:
\(\left(y^{8}\right)^{2}\)
- step2: Transform the expression:
\(y^{8\times 2}\)
- step3: Multiply the numbers:
\(y^{16}\)
Let's simplify each expression step by step using the exponent rules.
### 3. Simplification of Exponential Expressions
**a)** \((8^{6})^{2}\)
Using the power of a power rule: \((a^m)^n = a^{m \cdot n}\)
\[
(8^{6})^{2} = 8^{6 \cdot 2} = 8^{12}
\]
**b)** \((9^{12})^{4}\)
Using the same rule:
\[
(9^{12})^{4} = 9^{12 \cdot 4} = 9^{48}
\]
**c)** \((a^{5})^{3}\)
\[
(a^{5})^{3} = a^{5 \cdot 3} = a^{15}
\]
**d)** \((p^{2})^{2}\)
\[
(p^{2})^{2} = p^{2 \cdot 2} = p^{4}
\]
**e)** \(2(a^{10})^{3}\)
\[
2(a^{10})^{3} = 2a^{10 \cdot 3} = 2a^{30}
\]
**f)** \(3^{2}(y^{4})^{3}\)
\[
3^{2}(y^{4})^{3} = 3^{2}y^{4 \cdot 3} = 9y^{12}
\]
### 4. Determining Values
**a)** \((-4)^{3} + (3^{2})^{3}\)
Calculating each part:
\[
(-4)^{3} = -64 \quad \text{and} \quad (3^{2})^{3} = 9^{3} = 729
\]
Thus,
\[
-64 + 729 = 665
\]
**b)** \(3^{4} \div 3^{3} + \sqrt[3]{8}\)
Using the quotient rule:
\[
3^{4} \div 3^{3} = 3^{4-3} = 3^{1} = 3
\]
And \(\sqrt[3]{8} = 2\), so:
\[
3 + 2 = 5
\]
**c)** \(4^{2} + 4^{1} + 4^{0}\)
Calculating each term:
\[
4^{2} = 16, \quad 4^{1} = 4, \quad 4^{0} = 1
\]
Thus,
\[
16 + 4 + 1 = 21
\]
**d)** \(3^{10} \div 3^{5} \div 3^{2}\)
Using the quotient rule:
\[
3^{10} \div 3^{5} = 3^{10-5} = 3^{5}
\]
Then,
\[
3^{5} \div 3^{2} = 3^{5-2} = 3^{3} = 27
\]
**e)** \(10^{2} \times 10^{1} \times 10^{0} - 10^{3}\)
Using the product rule:
\[
10^{2} \times 10^{1} \times 10^{0} = 10^{2+1+0} = 10^{3}
\]
Thus,
\[
10^{3} - 10^{3} = 0
\]
**f)** \(3a^{2} \times 2a^{3}\)
Using the product rule:
\[
3a^{2} \times 2a^{3} = (3 \times 2)(a^{2} \times a^{3}) = 6a^{2+3} = 6a^{5}
\]
### 5. Further Simplification
**a)** \((3x^{2})^{3}\)
Using the power of a product rule:
\[
(3x^{2})^{3} = 3^{3}(x^{2})^{3} = 27x^{6}
\]
**b)** \(\left(\frac{y^{11}}{y^{3}}\right)^{2}\)
Using the quotient rule:
\[
\left(\frac{y^{11}}{y^{3}}\right)^{2} = \left(y^{11-3}\right)^{2} = (y^{8})^{2} = y^{16}
\]
### Summary of Results
- **3a)** \(8^{12}\)
- **3b)** \(9^{48}\)
- **3c)** \(a^{15}\)
- **3d)** \(p^{4}\)
- **3e)** \(2a^{30}\)
- **3f)** \(9y^{12}\)
- **4a)** \(665\)
- **4b)** \(5\)
- **4c)** \(21\)
- **4d)** \(27\)
- **4e)** \(0\)
- **4f)** \(6a^{5}\)
- **5a)** \(27x^{6}\)
- **5b)** \(y^{16}\)
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución