Pregunta
upstudy study bank question image url

Solve the inequality, Graph the so integers. \[ 4 c+17 \geq 7(c+2)-3 c \]

Ask by Hart Mann. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The inequality \(4c + 17 \geq 7(c + 2) - 3c\) is always true for all integers and real numbers.

Solución

Solve the inequality by following steps: - step0: Solve for \(c\): \(4c+17\geq 7\left(c+2\right)-3c\) - step1: Move the expression to the left side: \(4c+17-\left(7\left(c+2\right)-3c\right)\geq 0\) - step2: Calculate: \(3\geq 0\) - step3: The statement is true: \(c \in \mathbb{R}\) To solve the inequality \[ 4c + 17 \geq 7(c + 2) - 3c, \] let's simplify it step by step. 1. **Distribute on the right side:** \[ 7(c + 2) = 7c + 14. \] So the inequality becomes: \[ 4c + 17 \geq 7c + 14 - 3c. \] 2. **Combine like terms on the right side:** \[ 7c - 3c = 4c, \] thus the inequality simplifies to: \[ 4c + 17 \geq 4c + 14. \] 3. **Subtract \(4c\) from both sides:** \[ 17 \geq 14. \] This statement is always true. Since the inequality holds for all values of \(c\), the solution is: \[ c \in \mathbb{R}. \] ### Graphing the Solution The solution includes all real numbers, which means that on a number line, the entire line is shaded to indicate that every integer (and every real number) satisfies the inequality. ### Conclusion The inequality \(4c + 17 \geq 7(c + 2) - 3c\) is satisfied for all integers and real numbers.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

First, let's solve the inequality step by step. Start by simplifying the right side: \[ 4c + 17 \geq 7(c + 2) - 3c \] \[ 4c + 17 \geq 7c + 14 - 3c \] \[ 4c + 17 \geq 4c + 14 \] Now, subtract \(4c\) from both sides: \[ 17 \geq 14 \] This is always true, meaning the inequality holds for all values of \(c\). Therefore, the solution set includes all integers. To graph this, you will create a number line, and shade all the entire line since all integers satisfy the inequality. You can also indicate that there are no specific endpoints because it's true for every integer! So, grab your markers and have fun illustrating that full number line!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad