Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To solve the equation \( \frac{\cos 3 x}{\cos x} = 2 \cos 2 x - 1 \), let's recall that \( \cos 3x \) can be represented using the triple angle formula: \( \cos 3x = 4 \cos^3 x - 3 \cos x \). Substituting this in, we get: \[ \frac{4 \cos^3 x - 3 \cos x}{\cos x} = 2 \cos 2x - 1. \] Simplifying the left side gives us: \[ 4 \cos^2 x - 3 = 2 \cos 2x - 1. \] Now, we use the double angle formula \( \cos 2x = 2 \cos^2 x - 1 \), leading to: \[ 2(2 \cos^2 x - 1) - 1 = 4 \cos^2 x - 3. \] Expanding the right side: \[ 4 \cos^2 x - 2 - 1 = 4 \cos^2 x - 3. \] This reduces to \( 4 \cos^2 x - 3 = 4 \cos^2 x - 3 \), which is always true. Thus, the original equation holds for any value of \( x \) such that \( \cos x \neq 0 \) (to avoid division by zero). Solutions can be represented as \( x = n\pi + k\frac{\pi}{2} \) where \( n \) is any integer and \( k \) is any odd integer.
