Pregunta
upstudy study bank question image url

\( 2 x^{2}=-x+5( \) Are the roots real or Unreal

Ask by Mccoy Carlson. in South Africa
Jan 14,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation \( 2x^{2} = -x + 5 \) has two distinct real roots.

Solución

It appears there might be a small typo in your equation. Assuming the equation is: \[ 2x^{2} = -x + 5 \] Let's analyze the roots of the quadratic equation. ### Step 1: Rewrite the Equation in Standard Form First, bring all terms to one side to express the equation in the standard quadratic form \( ax^2 + bx + c = 0 \): \[ 2x^2 + x - 5 = 0 \] ### Step 2: Calculate the Discriminant The discriminant (\( D \)) of a quadratic equation \( ax^2 + bx + c = 0 \) is given by: \[ D = b^2 - 4ac \] Substituting the values from the equation: - \( a = 2 \) - \( b = 1 \) - \( c = -5 \) \[ D = (1)^2 - 4(2)(-5) \] \[ D = 1 + 40 \] \[ D = 41 \] ### Step 3: Determine the Nature of the Roots - **If \( D > 0 \)**: There are two distinct real roots. - **If \( D = 0 \)**: There is exactly one real root (a repeated root). - **If \( D < 0 \)**: The roots are complex (unreal). Since \( D = 41 > 0 \), the quadratic equation has **two distinct real roots**. ### Conclusion The roots of the equation \( 2x^{2} = -x + 5 \) are **real and distinct**.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine if the roots are real or unreal, we start by rearranging the equation into standard form: \( 2x^{2} + x - 5 = 0 \). We can find the discriminant \( D = b^{2} - 4ac \), where \( a = 2 \), \( b = 1 \), and \( c = -5 \). Plugging these values in gives \( D = 1^{2} - 4(2)(-5) = 1 + 40 = 41 \). Since the discriminant is positive, the roots are real! Now, if you ever find yourself in this situation again, remember the discriminant is your best friend! A positive value indicates two distinct real roots, zero means one double root, and a negative value means no real roots, just complex ones. Keep your math toolkit handy, and you'll breeze through quadratic equations!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad