Pregunta
upstudy study bank question image url

Hunter invested \( \$ 580 \) in an account paying an interest rate of \( 4.6 \% \) compounded monthly, Assuming no deposits or withdrawals are made, how much money, to the nearest dollar, would be in the account after 19 years?

Ask by Hamilton Riley. in the United States
Feb 07,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After 19 years, Hunter will have approximately \$1,387 in the account.

Solución

We can use the compound interest formula:   A = P(1 + r/m)^(m*t) where   P = 580,   r = 0.046 (annual interest rate in decimal),   m = 12 (compounding periods per year),   t = 19 years. Step 1: Calculate the periodic interest rate:   r/m = 0.046 / 12 ≈ 0.00383333 Step 2: Calculate the total number of compounding period:   n = m * t = 12 * 19 = 228 Step 3: Plug into the formula:   A = 580 (1 + 0.00383333)^(228) Step 4: Compute the growth factor:   (1 + 0.00383333)^(228) ≈ 2.392 Step 5: Multiply by the principal:   A ≈ 580 × 2.392 ≈ 1387.36 Rounding to the nearest dollar, the account will have approximately $1,387 after 19 years.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To calculate the future value of Hunter's investment, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the number of years the money is invested. Plugging in the values: - \( P = 580 \) - \( r = 0.046 \) - \( n = 12 \) (monthly compounding) - \( t = 19 \) We get: \[ A = 580 \left(1 + \frac{0.046}{12}\right)^{12 \times 19} \] Calculating the inside of the parentheses: \[ A = 580 \left(1 + 0.00383333\right)^{228} \] \[ A = 580 \left(1.00383333\right)^{228} \] Now calculating \( (1.00383333)^{228} \): \[ (1.00383333)^{228} \approx 2.4846 \] Finally, substituting back into the formula: \[ A \approx 580 \times 2.4846 \] \[ A \approx 1440.06 \] Rounding to the nearest dollar, the amount in the account after 19 years would be approximately \( \$ 1440 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad