Pregunta
upstudy study bank question image url

Refer to functions \( s \) and \( t \). Find the indicated function and write the domain in interval notation. \[ s(x)=\frac{x-1}{x^{2}-9} \] Part: \( 0 / 2 \) Part 1 of 2

Ask by Wells Page. in the United States
Feb 10,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The domain of \( s(x) = \frac{x-1}{x^{2}-9} \) is all real numbers except \( x = 3 \) and \( x = -3 \), which is written as \( (-\infty, -3) \cup (-3, 3) \cup (3, \infty) \).

Solución

Find the function \( s(x)=\frac{x-1}{x^{2}-9} \). Simplify the expression by following steps: - step0: Solution: \(\frac{x-1}{x^{2}-9}\) The function \( s(x) \) is given by \( s(x) = \frac{x-1}{x^{2}-9} \). To find the domain of the function, we need to determine the values of \( x \) for which the function is defined. The function is defined as long as the denominator \( x^{2}-9 \) is not equal to zero. To find the values of \( x \) that make the denominator zero, we set \( x^{2}-9 = 0 \) and solve for \( x \): \[ x^{2}-9 = 0 \] \[ x^{2} = 9 \] \[ x = \pm 3 \] Therefore, the function is not defined at \( x = 3 \) and \( x = -3 \). The domain of the function \( s(x) \) is all real numbers except \( x = 3 \) and \( x = -3 \), which can be written in interval notation as: \[ (-\infty, -3) \cup (-3, 3) \cup (3, \infty) \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the indicated function \( t(x) \), you generally need some context or specific description of how \( t(x) \) relates to \( s(x) \). However, one possibility could be to define \( t(x) \) as the inverse of \( s(x) \) or a transformation of \( s(x) \). For the function \( s(x) = \frac{x-1}{x^2 - 9} \), we first determine the domain by identifying the values that would make the denominator zero. The quadratic \( x^2 - 9 \) can be factored as \( (x - 3)(x + 3) \), which is zero at \( x = 3 \) and \( x = -3 \). Therefore, the domain excluded these points, leading to: \[ \text{Domain of } s(x) = (-\infty, -3) \cup (-3, 3) \cup (3, \infty) \] Now, you can use this information as a stepping stone for further exploration or modification of functions.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad