Pregunta
upstudy study bank question image url

Suraj watched a hovercraft take off from a platform. The height of the hovercraft (in meters above the ground) \( t \) minutes after takeoff is modeled by \( h(t)=-4 t^{2}+8 t+32 \) Suraj wants to know when the hovercraft will reach its highest point. 1) Rewrite the function in a different form (factored or vertex) where the answer appears as a number in the equation. \( h(t)= \)

Ask by Campos Parsons. in the United States
Feb 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( h(t) = -4(t - 1)^2 + 36 \) The hovercraft reaches its highest point at \( t = 1 \) minute.

Solución

We start with the function   h(t) = –4t² + 8t + 32. Step 1: Factor out –4 from the quadratic expression:   h(t) = –4(t² – 2t) + 32. Step 2: Complete the square inside the parentheses. For t² – 2t, take half of –2, which is –1, then square it to get 1:   t² – 2t = (t – 1)² – 1. Step 3: Substitute back into the equation:   h(t) = –4[(t – 1)² – 1] + 32      = –4(t – 1)² + 4 + 32      = –4(t – 1)² + 36. Now the function is written in vertex form:   h(t) = –4(t – 1)² + 36. The vertex of this parabola is (1, 36), meaning the hovercraft reaches its highest point at t = 1 minute.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the vertex form of the quadratic equation \( h(t) = -4t^2 + 8t + 32 \), we first complete the square. Starting with the equation, we factor out the \(-4\) from the first two terms: \[ h(t) = -4(t^2 - 2t) + 32 \] Next, we complete the square inside the parentheses. To do this, we take half of the coefficient of \( t \) (which is \(-2\)), square it (getting \( 1 \)), and add and subtract it inside the parentheses: \[ h(t) = -4 \left( t^2 - 2t + 1 - 1 \right) + 32 \] \[ h(t) = -4 \left( (t - 1)^2 - 1 \right) + 32 \] \[ h(t) = -4(t - 1)^2 + 4 + 32 \] \[ h(t) = -4(t - 1)^2 + 36 \] So, the rewritten function in vertex form is \( h(t) = -4(t - 1)^2 + 36 \), indicating that the highest point occurs at \( t = 1 \) minute with a maximum height of \( 36 \) meters. --- Now, Suraj can see that the hovercraft reaches its highest point at \( t = 1 \) minute and will be \( h(1) = 36 \) meters above the ground!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad