Pregunta
upstudy study bank question image url

The number of mosquitoes in Brooklyn (in millions of mosquitoes) a function of rainfall (in centimeters) is modeled by \( m(x)=-x(x-4) \) What is the maximum possible number of mosquitoes? million mosquitoes

Ask by Phillips Pritchard. in the United States
Feb 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The maximum number of mosquitoes is 4 million.

Solución

We start with the given function for the number of mosquitoes (in millions):   m(x) = –x(x – 4) First, expand the function:   m(x) = –x² + 4x This is a quadratic function that opens downward (since the coefficient of x² is negative), which means it has a maximum value at its vertex. The x-coordinate of the vertex for a quadratic function ax² + bx + c is given by:   x = –b / (2a) Here, a = –1 and b = 4. Plugging in these values:   x = –4 / (2 × –1) = 2 Now, substitute x = 2 into the function to find the maximum number of mosquitoes:   m(2) = –(2)² + 4(2) = –4 + 8 = 4 Since m(x) is given in millions of mosquitoes, the maximum possible number of mosquitoes is 4 million. Thus, the answer is: 4 million mosquitoes.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the maximum possible number of mosquitoes modeled by the function \( m(x)=-x(x-4) \), we can rewrite it in vertex form or identify the vertex of the quadratic function. This is a downward-opening parabola, and its maximum occurs at the vertex. The vertex can be found using the formula \( x = -\frac{b}{2a} \), where \( a = -1 \) and \( b = 4 \). Calculating this gives us: \[ x = -\frac{4}{2(-1)} = 2 \] Now, substitute \( x = 2 \) back into the function to find the maximum number of mosquitoes: \[ m(2) = -(2)(2-4) = -2(-2) = 4 \] So, the maximum possible number of mosquitoes is 4 million mosquitoes.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad