Pregunta
upstudy study bank question image url

A flying squirrel jumped from a tree branch and floated to the ground. The squirrel's height (in meters above the ground) \( t \) seconds after jumping is modeled by \( h(t)=-2 t^{2}+4 t+30 \) Suppose we want to know the height of the squirrel above the ground at its highest point. 1) Rewrite the function in a different form (factored or vertex) where the answer appears as a number in the equation. \( h(t)=\square \mp \)

Ask by Hamilton Gibson. in the United States
Feb 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The squirrel reaches a maximum height of 32 meters at 1 second.

Solución

We start with the function:   h(t) = -2t² + 4t + 30 Step 1. Factor out -2 from the t² and t terms:   h(t) = -2(t² - 2t) + 30 Step 2. Complete the square for the expression in the parentheses.   To complete the square for t² - 2t, take half of -2, which is -1, and square it to get 1.   So, t² - 2t = (t² - 2t + 1) - 1 = (t - 1)² - 1. Step 3. Substitute back into the equation:   h(t) = -2[(t - 1)² - 1] + 30      = -2(t - 1)² + 2 + 30      = -2(t - 1)² + 32 Thus, in vertex form the function is:   h(t) = -2(t - 1)² + 32 This shows the maximum height, 32 meters, appears directly in the equation at t = 1 second.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the height of the flying squirrel at its highest point, we can rewrite the quadratic function in vertex form. The vertex form of a quadratic function is given by \( h(t) = a(t - h)^2 + k \), where \((h, k)\) is the vertex. To find the vertex, we can use the formula \( t = -\frac{b}{2a} \). Applying this to our function, where \( a = -2 \) and \( b = 4 \): \[ t = -\frac{4}{2 \times -2} = 1 \] Now we substitute \( t = 1 \) back into the original height function to find the maximum height: \[ h(1) = -2(1)^2 + 4(1) + 30 = 32 \] Now we can express it in the vertex form: \[ h(t) = -2(t - 1)^2 + 32 \] In this equation, the highest point of the squirrel’s jump is clearly shown, with the answer being: \[ h(t) = 32 \mp \]

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad