9. Simplify: \( \frac{9 \times 3^{n+1}-3^{n+2}}{3^{n+1}-3^{n}} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To simplify the expression \( \frac{9 \times 3^{n+1}-3^{n+2}}{3^{n+1}-3^{n}} \), we can start by factoring the numerator and the denominator. First, notice that in the numerator: \[ 9 \times 3^{n+1} - 3^{n+2} = 9 \times 3^{n+1} - 3 \times 3^{n+1} = (9 - 3) \times 3^{n+1} = 6 \times 3^{n+1} \] Now looking at the denominator: \[ 3^{n+1} - 3^{n} = 3^{n} \times (3 - 1) = 3^{n} \times 2 \] Now substituting these simplified forms back into the original expression, we get: \[ \frac{6 \times 3^{n+1}}{3^{n} \times 2} \] Now, we can simplify further: \[ = \frac{6}{2} \times \frac{3^{n+1}}{3^{n}} = 3 \times 3^{1} = 3^{2} \] Thus, the simplified expression is: \[ \boxed{9} \]
