Decide whether each relation defines \( y \) as a function of \( x \). Give the dornain and range. \( y=\frac{3}{x-3} \) Does this relation give a function? Yes No What is the domain? (Type your answer in interval notation.) What is the range? (Type your answer in interval notation.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
Yes, this relation does define \( y \) as a function of \( x \) since for each input \( x \) (except for where the function is undefined), there is exactly one output \( y \). The domain of the function \( y = \frac{3}{x-3} \) excludes the value that makes the denominator zero. Thus, \( x - 3 \neq 0 \) leads to \( x \neq 3\). In interval notation, the domain is \( (-\infty, 3) \cup (3, \infty) \). For the range, as \( x \) approaches 3 from the left, \( y \) approaches negative infinity, and as \( x \) approaches 3 from the right, \( y \) approaches positive infinity. The function cannot equal zero, as there is no value of \( x \) that makes \( y \) equal to zero. So, the range is \( (-\infty, 0) \cup (0, \infty) \).
