Pregunta
upstudy study bank question image url

Find the slope of the graph of the function \( f(x)=\sqrt{2 x} \) at \( (8,4) \). Then find an equation of the line tangent to the graph at that point. A. \( \lim _{h \rightarrow 0} \frac{\sqrt{2(8+h)}-\sqrt{2(8)}}{h} \) R. \( \lim _{h \rightarrow 0} \frac{\sqrt{2(8-h)}+\sqrt{2(8)}}{h} \) C. \( \lim _{h \rightarrow 0} \frac{\sqrt{8+h}-\sqrt{8}}{h} \) D. \( \lim _{h \rightarrow 0} \frac{\sqrt{2(8)}-\sqrt{2(8+h)}}{h} \) The slope of the graph of the function \( f(x)=\sqrt{2 x} \) at \( (8,4) \) is \( \square \) (Type an integer or a simplified fraction.)

Ask by Christensen Lambert. in the United States
Mar 09,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The slope of the graph at \( (8,4) \) is \( \frac{1}{4} \), and the equation of the tangent line is \( y = \frac{1}{4}x + 2 \).

Solución

We are given the function \[ f(x)=\sqrt{2x}. \] The slope of the tangent line at a point is given by the derivative \( f'(x) \). We will use the definition of the derivative at \( x=8 \) with the limit \[ \lim_{h \rightarrow 0} \frac{f(8+h)-f(8)}{h}. \] Substituting \( f(x) \) gives \[ \lim_{h \rightarrow 0} \frac{\sqrt{2(8+h)}-\sqrt{2(8)}}{h}. \] This matches option A. Now, we compute the derivative in general. Write the function in power form: \[ f(x)= (2x)^{\frac{1}{2}}. \] Differentiate using the chain rule: \[ f'(x)=\frac{1}{2}(2x)^{-\frac{1}{2}} \cdot 2. \] Simplify: \[ f'(x)= (2x)^{-\frac{1}{2}}=\frac{1}{\sqrt{2x}}. \] Now, evaluate the derivative at \( x=8 \): \[ f'(8)=\frac{1}{\sqrt{2(8)}}=\frac{1}{\sqrt{16}}=\frac{1}{4}. \] Thus, the slope of the graph at \( (8,4) \) is \[ \frac{1}{4}. \] Next, we find the equation of the tangent line at \( (8,4) \) using the point-slope form \[ y-y_1=m(x-x_1), \] where \( m=\frac{1}{4} \) and \( (x_1,y_1)=(8,4) \). This gives: \[ y-4=\frac{1}{4}(x-8). \] Solving for \( y \): \[ y=\frac{1}{4}x-2+4, \] \[ y=\frac{1}{4}x+2. \] In summary: - The correct limit definition is option A. - The slope of the tangent line is \( \frac{1}{4} \). - The equation of the tangent line is \( y=\frac{1}{4}x+2 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the slope at the point \( (8, 4) \), we need to take the derivative of the function \( f(x) = \sqrt{2x} \). The derivative \( f'(x) \) can be computed using the power rule: \[ f'(x) = \frac{d}{dx}(2x)^{1/2} = \frac{1}{2}(2x)^{-1/2} \cdot 2 = \frac{1}{\sqrt{2x}}. \] Now we substitute \( x = 8 \): \[ f'(8) = \frac{1}{\sqrt{2 \cdot 8}} = \frac{1}{\sqrt{16}} = \frac{1}{4}. \] So the slope of the graph at the point \( (8, 4) \) is \( \frac{1}{4} \). Next, to find the equation of the tangent line at this point, we use the point-slope form of the equation of a line: \[ y - f(a) = f'(a)(x - a), \] where \( a = 8 \) and \( f(8) = 4 \): \[ y - 4 = \frac{1}{4}(x - 8). \] Rearranging gives us: \[ y = \frac{1}{4}x + 2. \] Thus, the equation of the tangent line at the point \( (8, 4) \) is: The slope of the graph of the function \( f(x) = \sqrt{2x} \) at \( (8, 4) \) is \( \frac{1}{4} \).

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad