Pregunta
upstudy study bank question image url

Calculate the final amount if R3200 is invested for 5 years at \( 7,25 \% \) p.a compound interest. Round off the answer to 2 decimal places.

Ask by Rodriguez Flynn. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The final amount is R4540.84.

Solución

To calculate the final amount after investing R3200 for 5 years at a compound interest rate of 7.25% per annum, we can use the formula for compound interest: \[ A = P \left( 1 + \frac{r}{100} \right)^n \] Where: - \( A \) is the final amount - \( P \) is the principal amount (initial investment) - \( r \) is the annual interest rate - \( n \) is the number of years Given: - \( P = 3200 \) - \( r = 7.25 \) - \( n = 5 \) Substitute the values into the formula: \[ A = 3200 \left( 1 + \frac{7.25}{100} \right)^5 \] Now, we can calculate the final amount. Calculate the value by following steps: - step0: Calculate: \(3200\left(1+\frac{7.25}{100}\right)^{5}\) - step1: Divide the terms: \(3200\left(1+\frac{29}{400}\right)^{5}\) - step2: Add the numbers: \(3200\left(\frac{429}{400}\right)^{5}\) - step3: Simplify: \(3200\times \frac{429^{5}}{400^{5}}\) - step4: Rewrite the expression: \(400\times 8\times \frac{429^{5}}{400^{5}}\) - step5: Reduce the numbers: \(8\times \frac{429^{5}}{400^{4}}\) - step6: Rewrite the expression: \(8\times \frac{429^{5}}{16^{4}\times 25^{4}}\) - step7: Rewrite the expression: \(2^{3}\times \frac{429^{5}}{2^{16}\times 25^{4}}\) - step8: Reduce the numbers: \(1\times \frac{429^{5}}{2^{13}\times 25^{4}}\) - step9: Multiply the fractions: \(\frac{429^{5}}{8192\times 25^{4}}\) The final amount after investing R3200 for 5 years at a compound interest rate of 7.25% per annum is approximately R4540.84. Rounding off to 2 decimal places, the final amount is R4540.84.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To calculate the final amount with compound interest, you can use the formula: \[ A = P(1 + r/n)^{nt} \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the time in years. In this case, you're investing R3200 at a 7.25% annual interest rate for 5 years. Assuming the interest is compounded annually (\( n = 1 \)): 1. Convert the percentage to decimal: \( r = 7.25 / 100 = 0.0725 \) 2. Plug in the values: \( A = 3200(1 + 0.0725/1)^{1 \times 5} \) \( A = 3200(1 + 0.0725)^{5} \) \( A = 3200(1.0725)^{5} \) \( A \approx 3200 \times 1.416319 \) \( A \approx 4532.42 \) So, the final amount after 5 years will be approximately R4532.42.

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad