Responder
(d) \( \frac{5x + 2}{5} - \frac{3x + 10}{3} = -\frac{44}{15} \)
(f) \( \frac{2x + 3}{x} + \frac{7}{4x^2} - \frac{4x + 1}{3} = \frac{-16x^3 + 20x^2 + 36x + 21}{12x^2} \)
Solución
We will simplify each expression step‐by‐step.
──────────────────────────────
Problem (d):
Simplify (5x + 2)/5 – (3x + 10)/3
Step 1. Find a common denominator for 5 and 3. The least common denominator is 15.
Step 2. Rewrite each fraction with denominator 15:
• Multiply (5x + 2)/5 by 3/3:
(5x + 2)/5 = 3(5x + 2) / (3·5) = (15x + 6)/15.
• Multiply (3x + 10)/3 by 5/5:
(3x + 10)/3 = 5(3x + 10) / (5·3) = (15x + 50)/15.
Step 3. Now combine the fractions:
(15x + 6)/15 – (15x + 50)/15
= [ (15x + 6) – (15x + 50) ] / 15
Step 4. Simplify the numerator:
(15x + 6) – (15x + 50) = 15x – 15x + 6 – 50 = –44
Thus, the simplified expression is:
–44/15
──────────────────────────────
Problem (f):
Simplify (2x + 3)/x + 7/(4x²) – (4x + 1)/3
Step 1. Identify the denominators: x, 4x², and 3.
The least common denominator (LCD) is 12x² (since LCD of x, 4x², and 3 is LCM( x, 4x², 3 ) = 12x²).
Step 2. Express each fraction with the denominator 12x²:
• For (2x + 3)/x:
Multiply numerator and denominator by 12x:
(2x + 3)/x = [12x(2x + 3)]/(12x²) = (24x² + 36x)/(12x²).
• For 7/(4x²):
Multiply numerator and denominator by 3:
7/(4x²) = (7·3)/(4x²·3) = 21/(12x²).
• For (4x + 1)/3:
Multiply numerator and denominator by 4x²:
(4x + 1)/3 = [4x²(4x + 1)]/(3·4x²) = (16x³ + 4x²)/(12x²).
Remember the minus sign in front of this term.
Step 3. Now combine all fractions:
[ (24x² + 36x) + 21 – (16x³ + 4x²) ] / (12x²)
Step 4. Simplify the numerator by combining like terms:
–16x³ + (24x² – 4x²) + 36x + 21
= –16x³ + 20x² + 36x + 21
Thus, the simplified expression is:
(–16x³ + 20x² + 36x + 21) / (12x²)
──────────────────────────────
Final Answers:
(d) (5x + 2)/5 – (3x + 10)/3 = –44/15
(f) (2x + 3)/x + 7/(4x²) – (4x + 1)/3 = (–16x³ + 20x² + 36x + 21)/(12x²)
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución