Pregunta
upstudy study bank question image url

You have \( \$ 300,000 \) saved for retirement. Your account earns \( 2 \% \) interest. How much will you be able to pull out each month, if you want to be able to take withdrawals for 25 years? Round your answer to the nearest dollar. Check Answer \( \$ \)

Ask by Mills Mcfarlane. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

You can withdraw approximately \$1,272 each month.

Solución

We can use the formula for the present value of an annuity. The formula is:   P = W × [1 – (1 + r)^(–n)] / r where   P = present value (in this case, $300,000),   W = monthly withdrawal amount,   r = monthly interest rate, and   n = total number of withdrawals (months). Step 1. Find the monthly interest rate:   Annual rate = 2% = 0.02   Monthly rate, r = 0.02 ÷ 12 ≈ 0.001667 Step 2. Convert the withdrawal period from years to months:   25 years × 12 = 300 months Step 3. Solve the annuity formula for W:   W = P × r / [1 – (1 + r)^(–n)] Substitute the known values:   W = 300,000 × 0.001667 / [1 – (1.001667)^(–300)] Step 4. Calculate the components: • Numerator: 300,000 × 0.001667 ≈ 500 • Denominator:   First, calculate (1.001667)^(300).   Since 300 × 0.001667 ≈ 0.5, we have (1.001667)^(300) ≈ e^(0.5) ≈ 1.64872.   Thus, (1 + r)^(–300) ≈ 1 / 1.64872 ≈ 0.60653.   So, Denom = 1 – 0.60653 ≈ 0.39347 Step 5. Compute W:   W ≈ 500 / 0.39347 ≈ 1271.92 Rounded to the nearest dollar, you can withdraw about $1,272 per month.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find out how much you can withdraw each month for 25 years, you can use the formula for the withdrawal amount from an annuity. With an interest rate of \(2\%\) per year or \(0.1667\%\) per month, your monthly withdrawal can be calculated using the formula: \[ P = \frac{r \times PV}{1 - (1 + r)^{-n}} \] where: - \(P\) is the monthly withdrawal amount - \(PV\) is the present value (\$300,000) - \(r\) is the monthly interest rate (\(0.02/12\)) - \(n\) is the total number of withdrawals (25 years \( \times 12\) months) Substituting in the values: \[ r = 0.02/12 = 0.00166667 \] \[ n = 25 \times 12 = 300 \] Now plugging in: \[ P = \frac{0.00166667 \times 300,000}{1 - (1 + 0.00166667)^{-300}} \] Calculating gives: \[ P \approx \frac{500}{1 - (1.00166667)^{-300}} \approx 1,200 \] So, you can withdraw approximately \( \$ 1,200 \) each month for 25 years.

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad