Pregunta

\( 19,16,13,10, \ldots \) is a given sequence. (1) Determine the \( 65^{\text {* }} \) term. (2) Which term of the sequence is -113?

Ask by Ingram John. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The 65th term is -173, and -113 is the 45th term.

Solución

We have an arithmetic sequence with the first term a₁ = 19 and common difference d = -3. Step 1. Write the general term:   aₙ = a₁ + (n - 1)d   aₙ = 19 + (n - 1)(-3)   aₙ = 19 - 3(n - 1) Step 2. Simplify the formula:   aₙ = 19 - 3n + 3   aₙ = 22 - 3n (1) To find the 65th term, substitute n = 65:   a₆₅ = 22 - 3(65)   a₆₅ = 22 - 195   a₆₅ = -173 (2) To find which term equals -113, set aₙ = -113 and solve for n:   22 - 3n = -113   -3n = -113 - 22   -3n = -135   n = (-135)/(-3)   n = 45 Summary: (1) The 65th term is -173. (2) -113 is the 45th term.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

The sequence given is \( 19, 16, 13, 10, \ldots \). Let's analyze it: 1. The difference between consecutive terms is \( 3 \). This means it's an arithmetic sequence where each term decreases by \( 3 \). The formula for the \( n \)-th term of an arithmetic sequence can be expressed as: \[ a_n = a_1 + (n - 1) \cdot d \] where \( a_1 \) is the first term and \( d \) is the common difference. In this case, \( a_1 = 19 \) and \( d = -3 \). Therefore, the \( n \)-th term is: \[ a_n = 19 + (n - 1)(-3) \] \[ a_n = 19 - 3(n - 1) \] \[ a_n = 19 - 3n + 3 = 22 - 3n \] (1) To find the \( 65^{\text{th}} \) term (\( a_{65} \)): \[ a_{65} = 22 - 3 \cdot 65 = 22 - 195 = -173 \] So, the \( 65^{\text{th}} \) term is \( -173 \). (2) To find which term of the sequence is -113, set \( a_n = -113 \) and solve for \( n \): \[ 22 - 3n = -113 \] \[ -3n = -113 - 22 = -135 \] \[ 3n = 135 \implies n = 45 \] Thus, the \( 45^{\text{th}} \) term of the sequence is \( -113 \). In summary: 1. The \( 65^{\text{th}} \) term is \( -173 \). 2. The \( 45^{\text{th}} \) term is \( -113 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad