Pregunta
upstudy study bank question image url

Complete the square of the given quadratic expression. Then, graph the function using the technique of shifting. \( f(x)=x^{2}-8 x+14 \) Complete the square by entering the correct numbers into the expression below. \( f(x)=(x-(\square))^{2}+(\square) \)

Ask by Adkins Moreno. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( f(x) = (x - 4)^2 - 2 \)

Solución

We start with the quadratic function   f(x) = x² – 8x + 14. To complete the square, follow these steps: 1. Group the x-terms:   x² – 8x  +14 2. Find the number needed to complete the square. Take half of the coefficient of x (which is –8) to get –4, and then square it:   (–4)² = 16. 3. Add and subtract 16 inside the expression:   f(x) = (x² – 8x + 16) – 16 + 14 4. Rewrite the trinomial as a perfect square:   x² – 8x + 16 = (x – 4)² 5. Combine the constants:   –16 + 14 = –2. Thus, the function in completed square form is:   f(x) = (x – 4)² – 2 In the expression f(x) = (x – (□))² + (□), the correct numbers are 4 and –2, so that   f(x) = (x – 4)² – 2. Graphing by shifting: • The vertex of the parabola is at (4, –2). • Compared to the basic parabola y = x², the graph is shifted 4 units to the right and 2 units downward. • The axis of symmetry is the vertical line x = 4. These shifts determine the position and shape of the graph.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To complete the square for the quadratic expression \( f(x) = x^2 - 8x + 14 \), we can rewrite the expression. 1. Take the coefficient of \( x \) (which is -8), halve it to get -4, and then square it to get 16. 2. Add and subtract this square inside the equation: \( f(x) = (x^2 - 8x + 16) - 16 + 14 \) 3. This simplifies to: \( f(x) = (x - 4)^2 - 2 \) So, in the form you provided, we have: \( f(x) = (x - (4))^{2} + (-2) \). Now the graph of the function can be depicted by recognizing that the vertex of the parabola is shifted to the point (4, -2). The graph opens upwards, and you can plot additional points by choosing x-values around 4 and evaluating the function, giving you a clear shape of the parabola!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad