Pregunta
upstudy study bank question image url

Example: Find the terminal points on the unit circle determined by \( t=3 \pi, t=-\pi \), and \( t=-\frac{\pi}{2} \)

Ask by Newton Hammond. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The terminal points on the unit circle for the angles \( t = 3\pi \), \( t = -\pi \), and \( t = -\frac{\pi}{2} \) are \((-1, 0)\), \((-1, 0)\), and \((0, -1)\) respectively.

Solución

To find the terminal points on the unit circle determined by the angles \( t = 3\pi \), \( t = -\pi \), and \( t = -\frac{\pi}{2} \), we will follow these steps: 1. **Understanding the Unit Circle**: The unit circle is defined as the set of all points \((x, y)\) such that \(x^2 + y^2 = 1\). The angle \(t\) is measured in radians from the positive x-axis. 2. **Finding the Equivalent Angles**: Since angles on the unit circle are periodic with a period of \(2\pi\), we can find equivalent angles within the range \([0, 2\pi)\) by adding or subtracting \(2\pi\) as necessary. 3. **Calculating the Terminal Points**: - For each angle, we will calculate the coordinates \((x, y)\) using the formulas: \[ x = \cos(t) \] \[ y = \sin(t) \] Now, let's calculate the terminal points for each angle. ### Step 1: Calculate for \( t = 3\pi \) First, we find the equivalent angle: \[ 3\pi - 2\pi = \pi \] Now, we calculate the coordinates: \[ x = \cos(\pi) = -1 \] \[ y = \sin(\pi) = 0 \] Thus, the terminal point for \( t = 3\pi \) is \((-1, 0)\). ### Step 2: Calculate for \( t = -\pi \) Next, we find the equivalent angle: \[ -\pi + 2\pi = \pi \] Now, we calculate the coordinates: \[ x = \cos(\pi) = -1 \] \[ y = \sin(\pi) = 0 \] Thus, the terminal point for \( t = -\pi \) is also \((-1, 0)\). ### Step 3: Calculate for \( t = -\frac{\pi}{2} \) Now, we find the equivalent angle: \[ -\frac{\pi}{2} + 2\pi = \frac{3\pi}{2} \] Now, we calculate the coordinates: \[ x = \cos\left(-\frac{\pi}{2}\right) = 0 \] \[ y = \sin\left(-\frac{\pi}{2}\right) = -1 \] Thus, the terminal point for \( t = -\frac{\pi}{2} \) is \((0, -1)\). ### Summary of Terminal Points - For \( t = 3\pi \): \((-1, 0)\) - For \( t = -\pi \): \((-1, 0)\) - For \( t = -\frac{\pi}{2} \): \((0, -1)\) These are the terminal points on the unit circle for the given angles.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the terminal points on the unit circle for the angles given, we can reduce each angle into a corresponding angle between \(0\) and \(2\pi\). For \(t=3\pi\), since it surpasses \(2\pi\), we subtract \(2\pi\) to get \(3\pi - 2\pi = \pi\), which corresponds to the point \((-1, 0)\). For \(t=-\pi\), we can add \(2\pi\) to get \(-\pi + 2\pi = \pi\), which is the same point \((-1, 0)\). Finally, for \(t=-\frac{\pi}{2}\), we add \(2\pi\) to get \(-\frac{\pi}{2} + 2\pi = \frac{3\pi}{2}\), resulting in the point \((0, -1)\). So, the terminal points are: - \(t=3\pi\): \((-1, 0)\) - \(t=-\pi\): \((-1, 0)\) - \(t=-\frac{\pi}{2}\): \((0, -1)\)

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad