Responder
The terminal points on the unit circle for the angles \( t = 3\pi \), \( t = -\pi \), and \( t = -\frac{\pi}{2} \) are \((-1, 0)\), \((-1, 0)\), and \((0, -1)\) respectively.
Solución
To find the terminal points on the unit circle determined by the angles \( t = 3\pi \), \( t = -\pi \), and \( t = -\frac{\pi}{2} \), we will follow these steps:
1. **Understanding the Unit Circle**: The unit circle is defined as the set of all points \((x, y)\) such that \(x^2 + y^2 = 1\). The angle \(t\) is measured in radians from the positive x-axis.
2. **Finding the Equivalent Angles**: Since angles on the unit circle are periodic with a period of \(2\pi\), we can find equivalent angles within the range \([0, 2\pi)\) by adding or subtracting \(2\pi\) as necessary.
3. **Calculating the Terminal Points**:
- For each angle, we will calculate the coordinates \((x, y)\) using the formulas:
\[
x = \cos(t)
\]
\[
y = \sin(t)
\]
Now, let's calculate the terminal points for each angle.
### Step 1: Calculate for \( t = 3\pi \)
First, we find the equivalent angle:
\[
3\pi - 2\pi = \pi
\]
Now, we calculate the coordinates:
\[
x = \cos(\pi) = -1
\]
\[
y = \sin(\pi) = 0
\]
Thus, the terminal point for \( t = 3\pi \) is \((-1, 0)\).
### Step 2: Calculate for \( t = -\pi \)
Next, we find the equivalent angle:
\[
-\pi + 2\pi = \pi
\]
Now, we calculate the coordinates:
\[
x = \cos(\pi) = -1
\]
\[
y = \sin(\pi) = 0
\]
Thus, the terminal point for \( t = -\pi \) is also \((-1, 0)\).
### Step 3: Calculate for \( t = -\frac{\pi}{2} \)
Now, we find the equivalent angle:
\[
-\frac{\pi}{2} + 2\pi = \frac{3\pi}{2}
\]
Now, we calculate the coordinates:
\[
x = \cos\left(-\frac{\pi}{2}\right) = 0
\]
\[
y = \sin\left(-\frac{\pi}{2}\right) = -1
\]
Thus, the terminal point for \( t = -\frac{\pi}{2} \) is \((0, -1)\).
### Summary of Terminal Points
- For \( t = 3\pi \): \((-1, 0)\)
- For \( t = -\pi \): \((-1, 0)\)
- For \( t = -\frac{\pi}{2} \): \((0, -1)\)
These are the terminal points on the unit circle for the given angles.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución