Pregunta
upstudy study bank question image url

\( \frac { d ^ { 2 } y } { d x ^ { 2 } } - 4 \frac { d y } { d x } + 5 y = c \)

Ask by Hall Gonzalez. in South Africa
Mar 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The general solution to the differential equation is: \[ y = e^{2x}(C_1 \cos x + C_2 \sin x) + \frac{c}{5} \] where \( C_1 \) and \( C_2 \) are constants.

Solución

1. **Identify the differential equation:** We are given \[ \frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 5y = c, \] where \( c \) is a constant. 2. **Solve the homogeneous part:** The homogeneous equation is \[ \frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 5y = 0. \] - Form the characteristic equation: \[ r^2 - 4r + 5 = 0. \] - Solve for \( r \) using the quadratic formula: \[ r = \frac{4 \pm \sqrt{4^2 - 4 \cdot 1 \cdot 5}}{2} = \frac{4 \pm \sqrt{16-20}}{2} = \frac{4 \pm \sqrt{-4}}{2}. \] Since \(\sqrt{-4} = 2i\), the roots are \[ r = 2 \pm i. \] - Therefore, the general solution to the homogeneous equation is given by \[ y_h = e^{2x}\left(C_1 \cos x + C_2 \sin x\right), \] where \( C_1 \) and \( C_2 \) are arbitrary constants. 3. **Find a particular solution:** Since the nonhomogeneous term is the constant \( c \), we assume a particular solution of the form \[ y_p = A, \] where \( A \) is a constant. - Substitute \( y_p = A \) into the differential equation. Note that \[ \frac{dy_p}{dx} = 0 \quad \text{and} \quad \frac{d^2 y_p}{dx^2} = 0. \] - Substitute into the equation: \[ 0 - 4(0) + 5A = c \quad \Longrightarrow \quad 5A = c. \] - Solve for \( A \): \[ A = \frac{c}{5}. \] Hence, the particular solution is \[ y_p = \frac{c}{5}. \] 4. **Combine the solutions:** The general solution to the nonhomogeneous differential equation is the sum of the homogeneous and particular solutions: \[ y = y_h + y_p = e^{2x}\left(C_1 \cos x + C_2 \sin x\right) + \frac{c}{5}. \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

This equation is a second-order linear ordinary differential equation with constant coefficients. It's reminiscent of equations from physics modeling systems undergoing oscillations or decay. To solve it, you typically find the complementary solution to the homogeneous part, \( \frac { d ^ { 2 } y } { d x ^ { 2 } } - 4 \frac { d y } { d x } + 5 y = 0 \), and then find a particular solution for the right-hand side \( c \) using methods like undetermined coefficients or variation of parameters. In the complementary solution, solving the characteristic equation \( r^2 - 4r + 5 = 0 \) leads to complex roots, which indicates oscillatory behavior. The general solution for the homogeneous equation will involve sine and cosine functions, giving you a taste of the wave-like behavior—just like musical notes—depending on the system's parameters.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad