Pregunta
upstudy study bank question image url

\( 1 \leftarrow \quad \begin{array}{l}\text { An investor plans to put a total of } \$ 110,000 \text { in a money market account, a bond fund, an international } \\ \text { stock fund, and a domestic stock fund. She wants } 60 \% \text { of her investment to be conservative (money } \\ \text { market and bonds). The investor wants the amount in international stocks to be one-fourth the amount } \\ \text { in domestic stocks. Finally, the investor needs an annual return of } \$ 4,400 \text {. Assuming the investor gets } \\ \text { annual returns of } 2.5 \% \text { on the money market account, } 3.5 \% \text { on the bond fund, } 4 \% \text { on the international } \\ \text { stock fund, and } 6 \% \text { on the domestic stock fund, how much should the investor put in each investment? } \\ \text { The investor should put } \$ 37400 \text { in the money market account. } \\ \text { (Type a whole number.) } \\ \text { The investor should put } \$ \square \text { in the bond fund. } \\ \text { (Type a whole number.) }\end{array} \). \( \quad \).

Ask by Powers Schwartz. in the United States
Feb 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The investor should put $28,600 in the bond fund.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Extra Insights

To solve this investment puzzle, let's first break down the investor's preferences. Since she wants 60% of her total investment to be conservative—meaning money market accounts and bonds—that gives us \$66,000 to work with, split between these two. With her allocation in mind, you can set up an equation to determine how much to allocate to each, ensuring her desired minimum annual return from the total investments. Next, focus on the proportions of domestic and international stocks. If the amount in international stocks is one-fourth of that in domestic stocks, let’s represent the amount in domestic stocks as \(x\). Thus, international stocks will be \( \frac{x}{4} \). By setting up equations that sum to the total and satisfy all conditions, you will discover the ideal allocations across all funds, keeping an eye on that \$4,400 return goal. It's a fun way to combine math, finance, and logical reasoning!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad