What is the phase shift of the function \( f(x)=\sin \left(x-\frac{\pi}{2}\right) ? \) (1 point) \( \frac{\pi}{\frac{\pi}{2}} \) \( \frac{\pi}{4} \) 1
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
The phase shift of the function \( f(x) = \sin\left(x - \frac{\pi}{2}\right) \) can be found by looking at the term inside the sine function. The general form for the phase shift is given by \( f(x) = \sin(x - c) \), where \( c \) represents the horizontal shift from the usual sine function. Here, \( c = \frac{\pi}{2} \), meaning there is a shift to the right by \( \frac{\pi}{2} \). In this context, it’s always good to remember that if the equation had been \( \sin(x + c) \), then you would shift to the left. This little detail can be a game-changer when dealing with periodic functions, so be sure to keep an eye on those signs!
