Pregunta
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
Solución
To prove that
we must show that for every
, there exists a
such that if
then
Starting with the inequality
square both sides (the square function is increasing for positive numbers) to obtain
This implies that if we choose
then whenever
, it follows that
Thus, the correct choice corresponding to
is
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Beyond the Answer
To determine the correct value of
corresponding to
for the limit
, we want to choose
such that whenever
, it follows that
.
Based on the limit definition, if we set
, squaring both sides gives us
. This implies that we can choose
.
So, the correct choice is
.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium