Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To solve the equation \( \sqrt{16x + 41} = x + 6 \), start by squaring both sides to eliminate the square root: \[ 16x + 41 = (x + 6)^2 \] Expanding the right side, we get: \[ 16x + 41 = x^2 + 12x + 36 \] Rearranging this equation gives us: \[ 0 = x^2 - 4x - 5 \] Factoring the quadratic equation: \[ 0 = (x - 5)(x + 1) \] Setting each factor to zero gives the potential solutions: \[ x - 5 = 0 \quad \Rightarrow \quad x = 5 \] \[ x + 1 = 0 \quad \Rightarrow \quad x = -1 \] Now, we need to verify these solutions in the original equation. 1. For \( x = 5 \): \[ \sqrt{16(5) + 41} = \sqrt{80 + 41} = \sqrt{121} = 11 \] and \[ 5 + 6 = 11 \quad (valid) \] 2. For \( x = -1 \): \[ \sqrt{16(-1) + 41} = \sqrt{-16 + 41} = \sqrt{25} = 5 \] and \[ -1 + 6 = 5 \quad (valid) \] Thus, the solution set is \( \{5, -1\} \).
