Pregunta
upstudy study bank question image url

A horizontal force of 200 N is applied to a \( 55-\mathrm{kg} \) cart across a \( 10-\mathrm{m} \) level surface. If the cart accelerates at \( 2.0 \mathrm{~m} / \mathrm{s}^{2} \), then what is the work done by the force of friction as it acts to retard the motion of the cart? 1) -1100 J 2) -900 J 3) -800 J 4) -700 J 5) -600 J

Ask by Pearson Black. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The work done by friction is -900 J.

Solución

We can solve the problem using Newton’s second law and the work formula. Step 1. Find the net force acting on the cart:   Net force (F_net) = mass (m) × acceleration (a)   F_net = 55 kg × 2.0 m/s² = 110 N Step 2. Determine the frictional force:   The applied force (F_applied) is 200 N, and friction opposes the motion.   Thus,    F_net = F_applied + F_friction   Substitute the known values:    110 N = 200 N + F_friction   Solve for F_friction:    F_friction = 110 N − 200 N = −90 N Step 3. Calculate the work done by friction:   Work (W) = force × displacement × cos(θ)   For friction, the force is −90 N and it acts opposite to the displacement (θ = 180°, cos 180° = −1). However, since the force is already negative, we can simply multiply:   W_friction = (−90 N) × (10 m) = −900 J Thus, the work done by friction is −900 J. The correct answer is option 2) -900 J.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the work done by the force of friction, we first need to calculate the net force acting on the cart. The net force can be determined using Newton's second law: \[ F_{\text{net}} = m \times a = 55 \, \text{kg} \times 2.0 \, \text{m/s}^2 = 110 \, \text{N}. \] Now, we know the applied force is 200 N. The frictional force (F_friction) can be found using the relationship: \[ F_{\text{net}} = F_{\text{applied}} - F_{\text{friction}}. \] Plugging in the known values: \[ 110 \, \text{N} = 200 \, \text{N} - F_{\text{friction}} \] Solving for \( F_{\text{friction}} \): \[ F_{\text{friction}} = 200 \, \text{N} - 110 \, \text{N} = 90 \, \text{N}. \] Now, to find the work done by friction (W_friction): \[ W_{\text{friction}} = F_{\text{friction}} \times d \times \cos(\theta), \] where \( d = 10 \, \text{m} \) and \( \theta = 180^\circ \) (since friction acts in the opposite direction of motion). Thus, \( \cos(180^\circ) = -1 \). So, \[ W_{\text{friction}} = 90 \, \text{N} \times 10 \, \text{m} \times (-1) = -900 \, \text{J}. \] Therefore, the answer is **-900 J (Option 2)**. Now you know how the math pieces fit together to find the work done by friction!

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad