Show that the following recurring decimals are rational. \( \begin{array}{llll}\text { (1) } 0, \dot{4} & \text { (2) } 0, \dot{2} \dot{1} & \text { (3) } 0,1 \dot{4} \\ \text { (5) } 0,12 \dot{4} & \text { (6) } 0, \dot{1} \dot{4} & \text { (7) }-1,1 \dot{4} \dot{4}\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To show that each recurring decimal is rational, we can express it as a fraction. 1. For \(0, \dot{4}\): Let \(x = 0.4444...\). Multiplying both sides by 10 gives \(10x = 4.4444...\). Now, subtract the first equation from the second: \(10x - x = 4.444... - 0.444...\) results in \(9x = 4\) which leads to \(x = \frac{4}{9}\). 2. For \(0, \dot{2} \dot{1}\): Let \(y = 0.212121...\). Multiplying by 100 results in \(100y = 21.2121...\). Subtract to get \(100y - y = 21.2121... - 0.2121...\) or \(99y = 21\), which simplifies to \(y = \frac{21}{99} = \frac{7}{33}\). 3. For \(0,1 \dot{4}\): Let \(z = 0.14444...\). Multiply by 10, getting \(10z = 1.4444...\). Now subtract: \(10z - z = 1.444... - 0.144...\) results in \(9z = 1.3\), leading to \(z = \frac{1.3}{9} = \frac{13}{90}\). 4. For \(0, 12 \dot{4}\): Let \(w = 0.124444...\). Multiplying by 1000 gives \(1000w = 124.444...\). Subtract: \(1000w - w = 124.444... - 0.12444...\) gives \(999w = 124.32\). To avoid decimals, express as \(3 \times 999 = 1240\), so \(w = \frac{1240}{999}\). 5. For \(0, \dot{1} \dot{4}\): Let \(v = 0.141414...\). Multiply by 100, leading to \(100v = 14.1414...\). Subtract: \(100v - v = 14.1414... - 0.1414...\) results in \(99v = 14\) or \(v = \frac{14}{99}\). 6. For \(-1,1 \dot{4} \dot{4}\): Let \(u = -1.144444...\). Multiplying by 10 gives \(-10u = -11.44444...\). Subtracting results in \(-10u + u = -11.444...\) which leads to \(-9u = -1.3\) or \(u = \frac{1.3}{9} = -\frac{13}{90}\). In all cases, we can express these recurring decimals as fractions, confirming they are rational numbers!
