Pregunta
upstudy study bank question image url

10 Points] DETAILS MY NOTES AUFQR2 4.1.014. Find the future value (in dollars) of a 2 -year investment of \( \$ 6,725 \) into a simple interest rate account that has an annual simple interest rate of \( 3.5 \% \). \( \$ \square \)

Ask by Perkins Huang. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The future value of the investment is \$7,195.75.

Solución

To find the future value of an investment in a simple interest account, we can use the formula for simple interest: \[ FV = P + I \] where: - \( FV \) is the future value, - \( P \) is the principal amount (initial investment), - \( I \) is the interest earned. The interest \( I \) can be calculated using the formula: \[ I = P \times r \times t \] where: - \( r \) is the annual interest rate (as a decimal), - \( t \) is the time in years. ### Step 1: Identify the known values - \( P = 6725 \) - \( r = 3.5\% = 0.035 \) - \( t = 2 \) ### Step 2: Calculate the interest earned Now, we can calculate the interest \( I \): \[ I = 6725 \times 0.035 \times 2 \] ### Step 3: Calculate the future value After calculating \( I \), we can find the future value \( FV \): \[ FV = P + I \] Let's perform the calculations. First, calculate \( I \): \[ I = 6725 \times 0.035 \times 2 \] Now, I will calculate this value. Calculate the value by following steps: - step0: Calculate: \(6725\times 0.035\times 2\) - step1: Multiply the terms: \(235.375\times 2\) - step2: Multiply the numbers: \(470.75\) The interest earned \( I \) is calculated as: \[ I = 6725 \times 0.035 \times 2 = 470.75 \] ### Step 4: Calculate the future value Now, we can find the future value \( FV \): \[ FV = P + I = 6725 + 470.75 \] Let's calculate this final value. Calculate the value by following steps: - step0: Calculate: \(6725+470.75\) - step1: Add the numbers: \(7195.75\) The future value \( FV \) is calculated as: \[ FV = 6725 + 470.75 = 7195.75 \] Thus, the future value of the 2-year investment of \( \$ 6,725 \) at an annual simple interest rate of \( 3.5\% \) is: \[ \boxed{7195.75} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the future value of an investment in a simple interest account, you can use the formula: \[ \text{Future Value} = P + (P \times r \times t) \] Where: - \( P \) = principal amount (\$6,725) - \( r \) = annual interest rate (3.5% or 0.035) - \( t \) = time in years (2) Plugging in the numbers: \[ \text{Future Value} = 6,725 + (6,725 \times 0.035 \times 2) \] \[ \text{Future Value} = 6,725 + (6,725 \times 0.07) \] \[ \text{Future Value} = 6,725 + 470.75 \] \[ \text{Future Value} = 7,195.75 \] So the future value of your investment will be \( \$7,195.75 \).

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad