Pregunta
(A) \( s^{2}+\frac{1}{a} \cdot\left(\frac{1}{a}\right)^{4} \)
(1i) \( x^{3}+\left(\frac{1}{1}\right)^{x} \times \frac{1}{x} \)
(C) \( \frac{1}{n} \cdot\left(\frac{1}{8}\right)^{0}
Ask by Reid Schofield. in Singapore
Mar 10,2025
Ask by Reid Schofield. in Singapore
Mar 10,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
- (A) \( s^2 + \frac{1}{a^5} \)
- (1i) \( x^3 + \frac{1}{x} \)
- (C) \( \frac{1}{n} < s^\circ \)
- (D) \( x^2 + \frac{1}{x^2} + \frac{1}{8} \)
- (1) No real solution exists for the inequality \(1 < n^3 < \frac{1}{n}\).
Solución
**(A)**
We have
\[
s^2 + \frac{1}{a} \cdot \left(\frac{1}{a}\right)^4.
\]
Step 1. Evaluate the power:
\[
\left(\frac{1}{a}\right)^4 = \frac{1}{a^4}.
\]
Step 2. Multiply by \(\frac{1}{a}\):
\[
\frac{1}{a} \cdot \frac{1}{a^4} = \frac{1}{a^5}.
\]
Thus, the simplified expression is
\[
s^2 + \frac{1}{a^5}.
\]
---
**(1i)**
We have
\[
x^3 + \left(\frac{1}{1}\right)^x \times \frac{1}{x}.
\]
Step 1. Note that
\[
\frac{1}{1} = 1 \quad \text{so} \quad 1^x = 1.
\]
Step 2. The expression becomes
\[
x^3 + 1 \times \frac{1}{x} = x^3 + \frac{1}{x}.
\]
---
**(C)**
We have the inequality
\[
\frac{1}{n} \cdot \left(\frac{1}{8}\right)^0 < s^\circ.
\]
Step 1. Recognize that any nonzero number raised to the 0th power equals 1, so
\[
\left(\frac{1}{8}\right)^0 = 1.
\]
Step 2. Multiply by \(\frac{1}{n}\):
\[
\frac{1}{n} \cdot 1 = \frac{1}{n}.
\]
Thus, the inequality reduces to
\[
\frac{1}{n} < s^\circ.
\]
---
**(D)**
We have
\[
\frac{1}{8} + x^2 + \left(\frac{1}{x}\right)^2.
\]
Step 1. Evaluate the square:
\[
\left(\frac{1}{x}\right)^2 = \frac{1}{x^2}.
\]
Thus, the expression becomes
\[
x^2 + \frac{1}{x^2} + \frac{1}{8}.
\]
---
**(1)**
We have the inequality
\[
\left(\frac{1}{n}\right)^0 < n^3 < \frac{1}{n}.
\]
Step 1. Since \(\left(\frac{1}{n}\right)^0 = 1\) (provided \(n \neq 0\)), the inequality becomes
\[
1 < n^3 < \frac{1}{n}.
\]
Step 2. Consider \(n>0\):
- From \(1 < n^3\) we deduce that
\[
n > 1.
\]
- From \(n^3 < \frac{1}{n}\) multiply both sides by \(n\) (which is positive) to obtain
\[
n^4 < 1 \quad \Longrightarrow \quad n < 1.
\]
These two conditions, \(n > 1\) and \(n < 1\), contradict one another.
Step 3. Consider \(n<0\):
- For negative \(n\), note that \(n^3\) is negative while \(1\) is positive. Thus,
\[
1 < n^3
\]
cannot hold.
Thus, there is no real number \(n\) satisfying the inequality.
---
**Summary of Answers:**
- (A) \(\quad s^2 + \frac{1}{a^5}\)
- (1i) \(\quad x^3 + \frac{1}{x}\)
- (C) \(\quad \frac{1}{n} < s^\circ\)
- (D) \(\quad x^2 + \frac{1}{x^2} + \frac{1}{8}\)
- (1) \(\quad\) The inequality reduces to \(\,1 < n^3 < \frac{1}{n},\,\) which has no real solution.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Mind Expander
Let's dive into a numerical universe! The expression \( s^{2}+\frac{1}{a} \cdot\left(\frac{1}{a}\right)^{4} \) can be simplified to \( s^{2} + \frac{1}{a^5} \). Fun fact—powers of fractions really show how tiny they can get! When you manipulate these terms, you're essentially playing with the building blocks of polynomials and their behavior, which is fascinating for anyone into math!
Now onto the equation \( \left(\frac{1}{n}\right)^{0}

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium