Pregunta
upstudy study bank question image url

\( 612 a ^ { 2 } + 23 a b + 10 b ^ { 2 } \)

Ask by Harris French. in South Africa
Jan 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The polynomial \(612a^2 + 23ab + 10b^2\) cannot be factored into a product of two binomials with real coefficients. It is irreducible over the real numbers.

Solución

The polynomial expression you've provided is: \[ 612a^2 + 23ab + 10b^2 \] To determine whether this quadratic expression in two variables can be factored into the product of two binomials with integer coefficients, let's attempt to factor it. ### General Form for Factoring Assume the polynomial can be factored as: \[ (m a + n b)(p a + q b) = 612a^2 + 23ab + 10b^2 \] Expanding the left side: \[ m p a^2 + (m q + n p) ab + n q b^2 = 612a^2 + 23ab + 10b^2 \] This gives us a system of equations based on the coefficients: 1. **For \(a^2\) term:** \[ m p = 612 \] 2. **For \(ab\) term:** \[ m q + n p = 23 \] 3. **For \(b^2\) term:** \[ n q = 10 \] ### Exploring Possible Factors Let's explore possible integer pairs \((n, q)\) that satisfy \(n q = 10\): - \((1, 10)\) - \((2, 5)\) - \((5, 2)\) - \((10, 1)\) We'll test each pair to see if we can find corresponding integers \(m\) and \(p\) that satisfy all equations. #### Case 1: \(n = 2\), \(q = 5\) 1. From \(n q = 10\): \[ 2 \times 5 = 10 \quad \text{(satisfies)} \] 2. From \(m q + n p = 23\): \[ 5m + 2p = 23 \] 3. From \(m p = 612\), solve for \(p = \frac{612}{m}\) and substitute into the second equation: \[ 5m + 2\left(\frac{612}{m}\right) = 23 \] Multiply through by \(m\) to eliminate the fraction: \[ 5m^2 + 1224 = 23m \] Rearranging: \[ 5m^2 - 23m + 1224 = 0 \] The discriminant (\(D\)) of this quadratic equation is: \[ D = (-23)^2 - 4 \times 5 \times 1224 = 529 - 24480 = -23951 \] Since \(D < 0\), there are no real solutions for \(m\) and \(p\) in this case. #### Case 2: \(n = 5\), \(q = 2\) Following a similar process, you'll find that no integer solutions satisfy all equations. #### Case 3 & 4: \(n = 1, q = 10\) and \(n = 10, q = 1\) Both cases result in quadratic equations with negative discriminants, indicating no real (and certainly no integer) solutions. ### Conclusion Since none of the possible integer pairs \((n, q)\) lead to integer values of \(m\) and \(p\) that satisfy all three equations, **the polynomial \(612a^2 + 23ab + 10b^2\) cannot be factored into a product of two binomials with integer coefficients**. Furthermore, even if we consider real coefficients, the negative discriminant implies that the polynomial is **irreducible over the real numbers**. If complex coefficients are allowed, it can be factored using complex numbers, but such factorization typically exceeds standard factoring requirements. **Final Answer:** The expression \(612a^2 + 23ab + 10b^2\) cannot be factored into a product of two binomials with real (or integer) coefficients. It is irreducible over the real numbers.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Did you know that quadratic forms like \( 612 a^2 + 23 ab + 10 b^2 \) can be represented as a conic section? This specific expression can describe an ellipse, a parabola, or a hyperbola in a graphical setting, depending on the coefficients. In this case, since \( 612 > 0 \) and the discriminant (which is \( 23^2 - 4 \times 612 \times 10 \)) is negative, it indicates that the graph represents an ellipse! If you ever need to factor such quadratic forms, remember the technique of completing the square or using the quadratic formula for two variables. While it looks daunting, breaking it down into simpler parts and checking common factors can help avoid mistakes. Often, folks forget to check for common divisibility first, which can lead to runaway calculations! So step cautiously!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad