Pregunta
upstudy study bank question image url

Decide if the given statement is true or false. If it is false, give the reason. \( \{3,9,4\} \subset\{3,4,9\} \) Choose the correct answer below. A. This statement is true. B. This statement is false. No set is a proper subset of itself. C. This statement is false. The second set is a proper subset of the first set, not the other way around. D. This statement is false. The elements of the two sets are not in the same order. E. This statement is false. The second set does not contain all the elements present in the first set.

Ask by Franklin May. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The statement \( \{3,9,4\} \subset\{3,4,9\} \) is true because all elements of the first set are present in the second set.

Solución

To determine whether the statement \( \{3,9,4\} \subset\{3,4,9\} \) is true or false, we need to understand the concept of subsets. 1. **Definition of Subset**: A set \( A \) is a subset of a set \( B \) (denoted \( A \subset B \)) if every element of \( A \) is also an element of \( B \). The order of elements in a set does not matter, as sets are defined by their elements, not by the order in which they are listed. 2. **Analyzing the Sets**: - The first set is \( \{3, 9, 4\} \). - The second set is \( \{3, 4, 9\} \). 3. **Checking Elements**: - The elements of the first set are 3, 9, and 4. - The elements of the second set are also 3, 4, and 9. Since all elements of the first set \( \{3, 9, 4\} \) are present in the second set \( \{3, 4, 9\} \), we can conclude that the statement \( \{3,9,4\} \subset\{3,4,9\} \) is true. Thus, the correct answer is: A. This statement is true.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

A. This statement is true. The first set \( \{3,9,4\} \) is indeed a subset of \( \{3,4,9\} \) because a subset only requires that all the elements in the first set are contained within the second set, regardless of order. In set theory, the order of elements does not matter, so both sets have the same elements. Set theory has a rich historical background, originating from the work of mathematicians like Georg Cantor in the late 19th century, when the concept of infinity and set operations transformed how mathematicians viewed and conducted their work. The exploration of ordered versus unordered sets lent itself to deeper understanding, leading to foundational developments in various branches of mathematics. In real-world applications, understanding subsets is crucial in areas such as data science and computer programming. For example, when filtering or sorting data, you often check if a collection of items (a subset) belongs to or is part of a larger data set, which helps to streamline processes, optimize efficiency, and make better data-driven decisions.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad