Determine the sollowing limits and explain your reasoning. a) \( \lim _{x \rightarrow-3} \frac{x^{2}-4 x+3}{x^{2}+3 x+2} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find the limit \( \lim _{x \rightarrow -3} \frac{x^{2}-4 x+3}{x^{2}+3 x+2} \), we first substitute \(-3\) directly into the function. The numerator \(x^{2}-4x+3\) simplifies to: \[ (-3)^{2} - 4(-3) + 3 = 9 + 12 + 3 = 24. \] The denominator \(x^{2}+3x+2\) becomes: \[ (-3)^{2} + 3(-3) + 2 = 9 - 9 + 2 = 2. \] Since the limit is not indeterminate, we can directly calculate it: \[ \frac{24}{2} = 12. \] Thus, the limit is 12. Keep in mind, when calculating limits, it's essential to check for any indeterminate forms like \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \) before directly substituting.
