Pregunta
upstudy study bank question image url

List the transformations from the parent function \( f(x)=\sin x \) to the following function: \( g(x)=-3 \sin \left(\frac{1}{2} x-\pi\right)+3 \)

Ask by Tran Dawson. in Canada
Nov 22,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- Horizontal stretch by a factor of 2. - Horizontal shift to the right by \( \pi \). - Reflection across the x-axis. - Vertical stretch by a factor of 3. - Vertical shift upward by 3 units.

Solución

To analyze the transformations from the parent function \( f(x) = \sin x \) to the function \( g(x) = -3 \sin \left(\frac{1}{2} x - \pi\right) + 3 \), we can break down the transformations step by step: 1. **Horizontal Stretch/Compression**: The term \( \frac{1}{2} x \) indicates a horizontal stretch. The factor \( \frac{1}{2} \) means that the function is stretched by a factor of 2. This affects the period of the sine function: - The period of \( f(x) = \sin x \) is \( 2\pi \). - The period of \( g(x) \) is \( \frac{2\pi}{\frac{1}{2}} = 4\pi \). 2. **Horizontal Shift**: The term \( -\pi \) inside the sine function indicates a horizontal shift to the right by \( \pi \) units. This is because the transformation \( \sin(kx - c) \) shifts the graph to the right by \( \frac{c}{k} \). 3. **Vertical Stretch/Compression**: The coefficient \( -3 \) in front of the sine function indicates a vertical stretch by a factor of 3 and a reflection across the x-axis. The negative sign means that the sine wave is flipped upside down. 4. **Vertical Shift**: The \( +3 \) at the end of the function indicates a vertical shift upward by 3 units. Putting all these transformations together, we can summarize the transformations from \( f(x) = \sin x \) to \( g(x) = -3 \sin \left(\frac{1}{2} x - \pi\right) + 3 \) as follows: - **Horizontal Stretch** by a factor of 2 (period changes from \( 2\pi \) to \( 4\pi \)). - **Horizontal Shift** to the right by \( \pi \) units. - **Vertical Stretch** by a factor of 3 and **Reflection** across the x-axis. - **Vertical Shift** upward by 3 units. These transformations can be summarized in the following order: 1. Horizontal stretch by a factor of 2. 2. Horizontal shift to the right by \( \pi \). 3. Reflection across the x-axis. 4. Vertical stretch by a factor of 3. 5. Vertical shift upward by 3 units.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To transform the parent function \( f(x) = \sin x \) into \( g(x) = -3 \sin \left(\frac{1}{2} x - \pi\right) + 3 \), you go through several steps. First, the horizontal compression and phase shift occur. The \( \frac{1}{2} x \) indicates a horizontal stretch by a factor of 2, and the \( -\pi \) is a phase shift to the right by \( \frac{\pi}{\frac{1}{2}} = 2\pi \) units. Next, the negative sign in front of the \( 3 \) reflects the graph across the x-axis. Then, multiplying by \( 3 \) vertically stretches it by a factor of 3, and finally, adding 3 shifts the entire graph upward by 3 units. So, we see these key transformations in action: a horizontal stretch, rightward phase shift, a reflection, vertical stretch, and an upward shift, making the path of the sine function take on a whole new character! If you're looking to visualize these transformations, think of how the sine wave bounces and dances. A normal sine wave glides gently up and down, but when you slap that negative in front and stretch it upwards by 3, it becomes a dramatic rollercoaster ride! So, be ready for a wild wavering experience!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad