Pregunta
If \( \triangle A B C \) is an equilateral triangle, find \( x \) if one of the angles is \( (5 x-5)^{\circ} \). \( x=60 \) Cannot be determined \( x=13 \) \( x=37 \)
Ask by Olson Marshall. in the United States
Feb 25,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
\( x = 13 \)
Solución
In an equilateral triangle, all angles measure 60°. Since one of the angles is given as (5x - 5)°, we set up the equation:
5x - 5 = 60
Now, add 5 to both sides:
5x = 65
Then, divide both sides by 5:
x = 13
Thus, the answer is x = 13.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Mind Expander
In an equilateral triangle, all three angles are equal and each measures \( 60^\circ \). Since one of the angles in \( \triangle ABC \) is given as \( (5x - 5)^\circ \), we can set up the equation: \[ 5x - 5 = 60 \] Solving for \( x \): \[ 5x = 60 + 5 \] \[ 5x = 65 \] \[ x = \frac{65}{5} = 13 \] So, the correct value for \( x \) is \( 13 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium