Pregunta
upstudy study bank question image url

A new car is purchased for 17900 dollars. The value of the car depreciates at \( 13.25 \% \) per year. To the nearest tenth of a year, how long will it be until the value of the car is 2800 dollars?

Ask by Ramirez Crawford. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

It will take approximately 13.1 years for the car's value to depreciate to $2800.

Solución

To find out how long it will take for the value of the car to depreciate to $2800, we can use the formula for exponential decay: \[ V(t) = V_0 \times (1 - r)^t \] where: - \( V(t) \) is the value of the car at time \( t \), - \( V_0 \) is the initial value of the car (17900 dollars), - \( r \) is the depreciation rate (13.25% or 0.1325), - \( t \) is the time in years. We want to find the time \( t \) when the value of the car is $2800. So, we set up the equation: \[ 2800 = 17900 \times (1 - 0.1325)^t \] Now, we can solve for \( t \) using logarithms. Solve the equation by following steps: - step0: Solve for \(t\): \(2800=17900\left(1-0.1325\right)^{t}\) - step1: Simplify: \(2800=17900\left(\frac{347}{400}\right)^{t}\) - step2: Swap the sides: \(17900\left(\frac{347}{400}\right)^{t}=2800\) - step3: Multiply by the reciprocal: \(17900\left(\frac{347}{400}\right)^{t}\times \frac{1}{17900}=2800\times \frac{1}{17900}\) - step4: Multiply: \(\left(\frac{347}{400}\right)^{t}=\frac{28}{179}\) - step5: Take the logarithm of both sides: \(\log_{\frac{347}{400}}{\left(\left(\frac{347}{400}\right)^{t}\right)}=\log_{\frac{347}{400}}{\left(\frac{28}{179}\right)}\) - step6: Evaluate the logarithm: \(t=\log_{\frac{347}{400}}{\left(\frac{28}{179}\right)}\) - step7: Transform the expression: \(t=\log_{\frac{347}{400}}{\left(28\right)}-\log_{\frac{347}{400}}{\left(179\right)}\) The solution to the equation is: \[ t = \log_{\frac{347}{400}}{(28)} - \log_{\frac{347}{400}}{(179)} \] Now, we can calculate the value of \( t \) using logarithms. Calculate the value by following steps: - step0: Calculate: \(\log_{\frac{347}{400}}{\left(28\right)}-\log_{\frac{347}{400}}{\left(179\right)}\) The value of \( t \) is approximately 13.05181 years. Therefore, it will take approximately 13 years for the value of the car to depreciate to $2800.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve this problem, we can use the formula for exponential decay, which is: \[ V = P(1 - r)^t \] Where: - \( V \) is the future value of the car (in this case, $2800), - \( P \) is the initial value of the car ($17900), - \( r \) is the depreciation rate (13.25% or 0.1325), - \( t \) is time in years. Plugging in the numbers, we get: \[ 2800 = 17900(1 - 0.1325)^t \] This simplifies to: \[ \frac{2800}{17900} = (0.8675)^t \] Now, calculating \( \frac{2800}{17900} \) gives approximately 0.1565. Taking the natural logarithm of both sides: \[ \ln(0.1565) = t \cdot \ln(0.8675) \] Now, let's solve for \( t \): \[ t = \frac{\ln(0.1565)}{\ln(0.8675)} \] Calculating the logs: \[ t \approx \frac{-1.860}{-0.143} \approx 13.0 \text{ years} \] So, it will take approximately **13.0 years** for the car's value to drop to $2800.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad