Pregunta
\[ f(x) = 3x + 4 \quad g(x) = 2x - 3 \] \[ \text{Find: } f \circ g(x) \]
Ask by Johnson Graham. in South Africa
Feb 22,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
f ∘ g(x) = 6x – 5
Solución
To find f ∘ g(x), substitute g(x) into f(x).
Step 1: Write down g(x):
g(x) = 2x – 3
Step 2: Substitute g(x) into f(x):
f(g(x)) = 3(g(x)) + 4 = 3(2x – 3) + 4
Step 3: Simplify:
= 6x – 9 + 4
= 6x – 5
Thus, f ∘ g(x) = 6x – 5.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Mind Expander
To find \( f \circ g(x) \), we need to compose the functions \( f(x) \) and \( g(x) \). This means we will substitute \( g(x) \) into \( f(x) \). First, we find \( g(x) \): \[ g(x) = 2x - 3 \] Now, we substitute \( g(x) \) into \( f(x) \): \[ f(g(x)) = f(2x - 3) \] Next, we replace \( x \) in \( f(x) = 3x + 4 \) with \( 2x - 3 \): \[ f(2x - 3) = 3(2x - 3) + 4 \] Now, distribute the 3: \[ = 6x - 9 + 4 \] Finally, combine like terms: \[ = 6x - 5 \] So, the result of \( f \circ g(x) \) is: \[ f \circ g(x) = 6x - 5 \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium