Pregunta
upstudy study bank question image url

A swimmer dives into a lake from a cliff and swims to the surface in a parabolic
path. The path of the swimmer can be modeled by the equation
, where is the height in feet, and is the time in
seconds since the swimmer left the top of the cliff.
Complete the sentence.
The diver will be underwater for a total of

Ask by Cervantes Olson. in the United States
Mar 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The diver will be underwater for approximately 0.831 seconds.

Solución

To determine how long the diver will be underwater, we need to find the time when the swimmer is at a height of (the surface of the water). This involves solving the equation:
Let’s solve this quadratic equation for .
Solve the quadratic equation by following steps:
  • step0: Solve using the quadratic formula:
  • step1: Multiply both sides:
  • step2: Solve using the quadratic formula:
  • step3: Simplify the expression:
  • step4: Simplify the expression:
  • step5: Separate into possible cases:
  • step6: Simplify the expression:
  • step7: Simplify the expression:
  • step8: Rewrite:

    The solutions to the equation are:
Since time cannot be negative, we will only consider for the time when the swimmer reaches the surface.
Next, we need to calculate to find the time the swimmer is underwater. Let’s compute .
Calculate the value by following steps:
  • step0: Calculate:

    The value of is approximately seconds.
To find the total time the diver is underwater, we need to consider the time from when the swimmer dives in until they reach the surface. Since the swimmer starts at the top of the cliff (at ) and reaches the surface at seconds, the total time underwater is approximately seconds.
Thus, we can complete the sentence:
The diver will be underwater for a total of approximately seconds.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find out for how long the diver will be underwater, we need to determine the time it takes for the swimmer to reach the lowest point of their parabolic path, and then also when they return to the surface (height of zero). The peak of the parabola can be found using , where and . This gives us seconds. Now, solving will give us the total time the swimmer spends underwater. The swimmer dives below the surface and returns to it at seconds and again at seconds. Thus, the total time underwater is about seconds.
Now, keep in mind that parabolas can give you quite the ride! Think of it like a rollercoaster – your height changes as you “dive” and “rise”. So next time you dive, just remember: you’re performing your very own water ballet with gravity as your dance partner!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad