Pregunta

2. State the property that justifies each of the statements a) \( x(2)=2(x) \) b) \( (7+4)+6-7+(2+6) \) c) \( 1(x)=x \) d) \( \left(\frac{2}{3}\right)\left(\frac{3}{2}\right)=1 \)

Ask by Bates Ortiz. in Zambia
Feb 17,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a) Commutative Property of Multiplication b) Associative Property of Addition c) Multiplicative Identity Property d) Multiplicative Inverse Property

Solución

Let's analyze each statement and identify the property that justifies it. a) \( x(2) = 2(x) \) **Property:** Commutative Property of Multiplication **Explanation:** This property states that the order in which two numbers are multiplied does not change the product. Thus, \( x(2) \) can be rearranged to \( 2(x) \). b) \( (7+4)+6-7+(2+6) \) **Property:** Associative Property of Addition **Explanation:** This property states that the way in which numbers are grouped in addition does not change the sum. The expression can be rearranged and grouped in different ways without affecting the result. c) \( 1(x) = x \) **Property:** Multiplicative Identity Property **Explanation:** This property states that any number multiplied by 1 remains unchanged. Therefore, multiplying \( x \) by 1 gives \( x \). d) \( \left(\frac{2}{3}\right)\left(\frac{3}{2}\right) = 1 \) **Property:** Multiplicative Inverse Property **Explanation:** This property states that a number multiplied by its reciprocal (or multiplicative inverse) equals 1. Here, \( \frac{2}{3} \) and \( \frac{3}{2} \) are reciprocals of each other.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

a) This statement demonstrates the **Commutative Property of Multiplication**, which states that the order in which two numbers are multiplied does not affect the product. In this case, \( x(2)=2(x) \) shows that multiplying \( x \) by 2 is the same as multiplying \( 2 \) by \( x \). b) This expression illustrates the **Associative Property of Addition**, which states that the way in which numbers are grouped in an addition problem does not change their sum. Here, rearranging the grouping of numbers (as seen in \( (7+4)+6-7+(2+6) \)) will yield the same total regardless of how they are grouped. c) This statement reflects the **Multiplicative Identity Property**, which states that any number multiplied by 1 remains unchanged. The equation \( 1(x)=x \) confirms that multiplying \( x \) by the number 1 does not alter its value. d) This example highlights the **Multiplicative Inverse Property**, which states that the product of a number and its reciprocal (or multiplicative inverse) is always 1. In this case, \( \left(\frac{2}{3}\right)\left(\frac{3}{2}\right)=1 \) shows that when \( \frac{2}{3} \) is multiplied by \( \frac{3}{2} \), the result equals 1.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad