Pregunta
upstudy study bank question image url

A species of fish was added to a lake. The population size \( P(t) \) of this species can be modeled by the following function where \( t \) is the number of years from the time the species was added to the lake. \[ P(t)=\frac{2800}{1+9 e^{-0.2 t}} \] Find the initial population size of the species and the population size after 7 years. Round your answers to the nearest whole number as necessary. \( \begin{array}{l}\text { Initial population size: } \\ \text { Population size after } 7 \text { years: } \square \text { fish }\end{array} \)

Ask by Moran Gibson. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Initial population size: 2800 fish Population size after 7 years: 1329 fish

Solución

Substitute \( t=0 \) into the expression \( \frac{2800}{1+9 e^{-0.2 t}} \). Evaluate the expression by following steps: - step0: Evaluate: \(\frac{2800}{\left(1+9exp\left(-0.2t\right)\right)}\) - step1: Substitute: \(\frac{2800}{\left(1+9exp\left(-0.2\times 0\right)\right)}\) - step2: Multiply: \(\frac{2800}{\left(1+9exp\times 0\right)}\) - step3: Multiply: \(\frac{2800}{\left(1+0\right)}\) - step4: Remove 0: \(\frac{2800}{1}\) - step5: Divide the terms: \(2800\) Substitute \( t=7 \) into the expression \( \frac{2800}{1+9 e^{-0.2 t}} \). Evaluate the expression by following steps: - step0: Evaluate: \(\frac{2800}{\left(1+9exp\left(-0.2t\right)\right)}\) - step1: Substitute: \(\frac{2800}{\left(1+9exp\left(-0.2\times 7\right)\right)}\) - step2: Multiply the numbers: \(\frac{2800}{\left(1+9exp\left(-1.4\right)\right)}\) - step3: Multiply: \(\frac{2800}{\left(1-12.6exp\right)}\) - step4: Remove the parentheses: \(\frac{2800}{1-12.6exp}\) - step5: Simplify the expression: \(\frac{14000}{5-63exp}\) Calculate \( \frac{14000}{5-63exp} \). Simplify the expression by following steps: - step0: Solution: \(\frac{14000}{5-63exp}\) The initial population size of the species is 2800 fish. To find the population size after 7 years, we need to calculate \( \frac{14000}{5-63e^{-1.4}} \). Calculate the value by following steps: - step0: Calculate: \(\frac{14000}{5-63e^{-1.4}}\) - step1: Convert the expressions: \(\frac{14000}{5-63e^{-\frac{7}{5}}}\) - step2: Multiply the terms: \(\frac{14000}{5-\frac{63e^{\frac{3}{5}}}{e^{2}}}\) - step3: Subtract the numbers: \(\frac{14000}{\frac{5e^{2}-63e^{\frac{3}{5}}}{e^{2}}}\) - step4: Multiply by the reciprocal: \(14000\times \frac{e^{2}}{5e^{2}-63e^{\frac{3}{5}}}\) - step5: Multiply: \(\frac{14000e^{2}}{5e^{2}-63e^{\frac{3}{5}}}\) - step6: Simplify: \(\frac{14000e^{2}}{5e^{2}-63\sqrt[5]{e^{3}}}\) The population size after 7 years is approximately 1329 fish.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine the initial population size, we can evaluate the function \( P(t) \) at \( t = 0 \): \[ P(0) = \frac{2800}{1 + 9 e^{-0.2 \cdot 0}} = \frac{2800}{1 + 9 \cdot 1} = \frac{2800}{10} = 280 \] So, the initial population size is 280 fish. Next, we calculate the population size after 7 years by substituting \( t = 7 \): \[ P(7) = \frac{2800}{1 + 9 e^{-0.2 \cdot 7}} \approx \frac{2800}{1 + 9 e^{-1.4}} \] Calculating \( e^{-1.4} \approx 0.2466 \): \[ P(7) \approx \frac{2800}{1 + 9 \cdot 0.2466} = \frac{2800}{1 + 2.2194} \approx \frac{2800}{3.2194} \approx 869.66 \] Rounding to the nearest whole number, the population size after 7 years is approximately 870 fish. \[ \begin{array}{l} \text{Initial population size: 280 fish} \\ \text{Population size after 7 years: 870 fish} \end{array} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad