Pregunta
upstudy study bank question image url

4) Find the exact value of \( \sin (\alpha-\beta) \) if \( \cos \alpha=\frac{1}{4}, 0<\alpha<\frac{\pi}{2} \) and \( \sin \beta=\frac{3}{4}, \frac{\pi}{2}<\beta<\pi \). a) \( \frac{\sqrt{105}+3}{4} \) b) \( 0 \frac{-\sqrt{105}-3}{16} \) c) \( 0 \frac{\sqrt{105}+3}{16} \) d) \( 0 \frac{\sqrt{105}-3}{4} \)

Ask by Wang Gough. in Puerto Rico
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The exact value of \( \sin(\alpha - \beta) \) is \( -\frac{\sqrt{105} + 3}{16} \), which corresponds to option b).

Solución

To find the exact value of \( \sin(\alpha - \beta) \), we can use the sine difference identity: \[ \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \] We are given \( \cos \alpha = \frac{1}{4} \) and \( \sin \beta = \frac{3}{4} \). We need to find \( \sin \alpha \) and \( \cos \beta \). ### Step 1: Find \( \sin \alpha \) Since \( \cos \alpha = \frac{1}{4} \) and \( 0 < \alpha < \frac{\pi}{2} \), we can use the Pythagorean identity: \[ \sin^2 \alpha + \cos^2 \alpha = 1 \] Substituting \( \cos \alpha \): \[ \sin^2 \alpha + \left(\frac{1}{4}\right)^2 = 1 \] \[ \sin^2 \alpha + \frac{1}{16} = 1 \] \[ \sin^2 \alpha = 1 - \frac{1}{16} = \frac{16}{16} - \frac{1}{16} = \frac{15}{16} \] Taking the positive square root (since \( \alpha \) is in the first quadrant): \[ \sin \alpha = \sqrt{\frac{15}{16}} = \frac{\sqrt{15}}{4} \] ### Step 2: Find \( \cos \beta \) Since \( \sin \beta = \frac{3}{4} \) and \( \frac{\pi}{2} < \beta < \pi \), we can again use the Pythagorean identity: \[ \sin^2 \beta + \cos^2 \beta = 1 \] Substituting \( \sin \beta \): \[ \left(\frac{3}{4}\right)^2 + \cos^2 \beta = 1 \] \[ \frac{9}{16} + \cos^2 \beta = 1 \] \[ \cos^2 \beta = 1 - \frac{9}{16} = \frac{16}{16} - \frac{9}{16} = \frac{7}{16} \] Taking the negative square root (since \( \beta \) is in the second quadrant): \[ \cos \beta = -\sqrt{\frac{7}{16}} = -\frac{\sqrt{7}}{4} \] ### Step 3: Substitute into the sine difference formula Now we can substitute \( \sin \alpha \), \( \cos \alpha \), \( \sin \beta \), and \( \cos \beta \) into the sine difference formula: \[ \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \] Substituting the values we found: \[ \sin(\alpha - \beta) = \left(\frac{\sqrt{15}}{4}\right)\left(-\frac{\sqrt{7}}{4}\right) - \left(\frac{1}{4}\right)\left(\frac{3}{4}\right) \] Calculating each term: \[ = -\frac{\sqrt{15} \sqrt{7}}{16} - \frac{3}{16} \] Combining the terms: \[ = -\frac{\sqrt{105}}{16} - \frac{3}{16} = -\frac{\sqrt{105} + 3}{16} \] ### Final Answer Thus, the exact value of \( \sin(\alpha - \beta) \) is: \[ \boxed{-\frac{\sqrt{105} + 3}{16}} \] This corresponds to option b).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the exact value of \( \sin (\alpha - \beta) \), we can utilize the sine subtraction formula: \[ \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \] We know \( \cos \alpha = \frac{1}{4} \) and need to find \( \sin \alpha \). Since \( \alpha \) is in the first quadrant, we can use the Pythagorean identity: \[ \sin^2 \alpha + \cos^2 \alpha = 1 \implies \sin^2 \alpha + \left(\frac{1}{4}\right)^2 = 1 \] \[ \sin^2 \alpha + \frac{1}{16} = 1 \implies \sin^2 \alpha = 1 - \frac{1}{16} = \frac{15}{16} \implies \sin \alpha = \frac{\sqrt{15}}{4} \] Next, we find \( \sin \beta \) and \( \cos \beta \). Given \( \sin \beta = \frac{3}{4} \) and knowing \( \beta \) is in the second quadrant, we use the identity again to find \( \cos \beta \): \[ \sin^2 \beta + \cos^2 \beta = 1 \implies \left(\frac{3}{4}\right)^2 + \cos^2 \beta = 1 \] \[ \frac{9}{16} + \cos^2 \beta = 1 \implies \cos^2 \beta = 1 - \frac{9}{16} = \frac{7}{16} \implies \cos \beta = -\frac{\sqrt{7}}{4} \] Now we substitute \( \sin \alpha \), \( \cos \alpha \), \( \sin \beta \), and \( \cos \beta \) into the sine subtraction formula: \[ \sin(\alpha - \beta) = \left(\frac{\sqrt{15}}{4}\right)\left(-\frac{\sqrt{7}}{4}\right) - \left(\frac{1}{4}\right)\left(\frac{3}{4}\right) \] \[ = -\frac{\sqrt{105}}{16} - \frac{3}{16} \] \[ = -\frac{\sqrt{105}+3}{16} \] Thus, the exact value of \( \sin(\alpha - \beta) \) is \[ \boxed{-\frac{\sqrt{105}+3}{16}} \] So, the correct choice is (b) \( 0 \frac{-\sqrt{105}-3}{16} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad