Calculate Area of the region bnurided by \( F(x)=-x^{2}-2 x \) and \( x \)-axis
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To find the area between the curve \( F(x) = -x^2 - 2x \) and the x-axis, we first need to determine the points where the curve intersects the x-axis. Setting \( F(x) = 0 \), we get: \[ -x^2 - 2x = 0 \] Factoring out \(-x\) gives: \[ -x(x + 2) = 0 \] Thus, the roots are \( x = 0 \) and \( x = -2 \). The area can be calculated using the integral from \(-2\) to \(0\): \[ \text{Area} = -\int_{-2}^{0} (-x^2 - 2x) \, dx \] Evaluating the integral: \[ \text{Area} = \int_{-2}^{0} (x^2 + 2x) \, dx = \left[ \frac{x^3}{3} + x^2 \right]_{-2}^{0} \] Calculating this: At \( x = 0 \): \[ \frac{0^3}{3} + 0^2 = 0 \] At \( x = -2 \): \[ \frac{(-2)^3}{3} + (-2)^2 = \frac{-8}{3} + 4 = \frac{-8 + 12}{3} = \frac{4}{3} \] So, the area is: \[ Area = 0 - \left( \frac{4}{3} \right) = \frac{4}{3} \] Therefore, the area of the region bounded by the curve and the x-axis is \(\frac{4}{3}\) square units. And there you go, a clear case of math working together!
preguntas relacionadas
