\( -4|6-3 x|+8 \) write as a Picewuse define function
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To express the function \( f(x) = -4|6-3x| + 8 \) as a piecewise function, you need to consider two cases based on the absolute value expression. The critical point is when the inside of the absolute value is equal to zero, which occurs at \( 6 - 3x = 0 \) or \( x = 2 \). 1. If \( x < 2 \), then \( 6 - 3x > 0 \) and \( |6 - 3x| = 6 - 3x \). Substituting this into the function gives: \[ f(x) = -4(6 - 3x) + 8 = -24 + 12x + 8 = 12x - 16 \] 2. If \( x \geq 2 \), then \( 6 - 3x \leq 0 \) and \( |6 - 3x| = -(6 - 3x) = 3x - 6 \). Thus: \[ f(x) = -4(3x - 6) + 8 = -12x + 24 + 8 = -12x + 32 \] Putting it all together, you have: \[ f(x) = \begin{cases} 12x - 16 & \text{if } x < 2 \\ -12x + 32 & \text{if } x \geq 2 \end{cases} \]
