Pregunta
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
\( \frac{pq}{p+q} \)
Solución
Calculate or simplify the expression \( (p^2*q-p*q^2)/(p^2-q^2) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(p^{2}q-pq^{2}\right)}{\left(p^{2}-q^{2}\right)}\)
- step1: Remove the parentheses:
\(\frac{p^{2}q-pq^{2}}{p^{2}-q^{2}}\)
- step2: Factor the expression:
\(\frac{pq\left(p-q\right)}{\left(p-q\right)\left(p+q\right)}\)
- step3: Reduce the fraction:
\(\frac{pq}{p+q}\)
The simplified form of the expression \( \frac{p^{2} q-p q^{2}}{p^{2}-q^{2}} \) is \( \frac{pq}{p+q} \).
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Mind Expander
To simplify the expression \( \frac{p^{2} q - p q^{2}}{p^{2} - q^{2}} \), you can start by factoring both the numerator and the denominator. The numerator can be factored as \( pq(p - q) \) and the denominator is the difference of squares, which factors to \( (p - q)(p + q) \). Now, putting it all together, we have: \[ \frac{pq(p - q)}{(p - q)(p + q)} \] Assuming \( p \neq q \) (to avoid division by zero), you can cancel the \( (p - q) \) terms: \[ \frac{pq}{p + q} \] Thus, the simplified form of the expression is \( \frac{pq}{p + q} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium