If \( 62.7 \mathrm{gCr}(\mathrm{s}) \) reacts with excess \( \mathrm{S}_{8}(\mathrm{~s}) \) and \( 144.7{\mathrm{~g} \text { of } \mathrm{Cr}_{2} \mathrm{~S}_{3}(\mathrm{~s}) \text { formed from an experimemt, }}_{\text {What is the percent yield for } \mathrm{Cr}_{2} \mathrm{~S}_{3}(\mathrm{~s}) \text { ? (answer to } 1 \text { decimal place) }}^{\text {MW } \mathrm{S}_{4}=256.8 \mathrm{~g} / \mathrm{mol}} \quad \mathrm{MW} \mathrm{Cr}_{2} \mathrm{~S}_{3}=200.19 \mathrm{~g} / \mathrm{mol} \) \( 16 \mathrm{Cr}(\mathrm{s})+3 \mathrm{~S}_{8}(\mathrm{~s}) \rightarrow 8 \mathrm{Cr}_{2} \mathrm{~S}_{3}(\mathrm{~s}) \) Your Answer:
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To determine the percent yield of \( \mathrm{Cr}_2\mathrm{S}_3 \), first, convert the mass of chromium to moles. Given that the molar mass of chromium is \( 51.9961 \, \mathrm{g/mol} \), you can find the moles of chromium: \[ \text{Moles of Cr} = \frac{62.7 \, \mathrm{g}}{51.9961 \, \mathrm{g/mol}} \approx 1.204 \, \text{mol} \] According to the balanced equation, \( 16 \) moles of Cr produce \( 8 \) moles of \( \mathrm{Cr}_2\mathrm{S}_3 \). Therefore, the moles of \( \mathrm{Cr}_2\mathrm{S}_3 \) produced from \( 1.204 \, \text{mol} \) of Cr is: \[ \text{Moles of } \mathrm{Cr}_2\mathrm{S}_3 = \frac{1.204 \, \text{mol Cr} \times 8 \, \text{mol } \mathrm{Cr}_2\mathrm{S}_3}{16 \, \text{mol Cr}} \approx 0.602 \, \text{mol } \mathrm{Cr}_2\mathrm{S}_3 \] Now convert moles of \( \mathrm{Cr}_2\mathrm{S}_3 \) to grams: \[ \text{Mass of } \mathrm{Cr}_2\mathrm{S}_3 = 0.602 \, \text{mol} \times 200.19 \, \mathrm{g/mol} \approx 120.4 \, \text{g} \] Finally, use the actual yield to calculate percent yield: \[ \text{Percent Yield} = \left(\frac{\text{actual yield}}{\text{theoretical yield}} \times 100\right) = \left(\frac{144.7 \, \text{g}}{120.4 \, \text{g}} \times 100\right) \approx 120.2\% \] So, the percent yield of \( \mathrm{Cr}_2\mathrm{S}_3 \) is \( 120.2\% \). To make this calculation more fun, let's remember that percent yields can occasionally surpass 100%! This often happens due to experimental error or impurities in what you thought was your product. Just think of it as your chemistry lab pulling a surprise twist, much like a plot twist in a favorite mystery novel. And if you're diving deeper into chemistry, you might want to check out some classic texts like "The Disappearing Spoon" by Sam Kean. It explores the elements in the periodic table with fun anecdotes and stories—a great way to mix science with a bit of entertainment!
