Responder
All the given trigonometric equations are valid and hold true based on the identities used.
Solución
Let's analyze and simplify each of the given equations step by step.
### (d) \( \frac{\tan x \cdot \cos x}{\sin x}=1 \)
1. **Start with the left side**:
\[
\frac{\tan x \cdot \cos x}{\sin x}
\]
Recall that \( \tan x = \frac{\sin x}{\cos x} \). Substitute this into the equation:
\[
\frac{\frac{\sin x}{\cos x} \cdot \cos x}{\sin x}
\]
2. **Simplify**:
The \( \cos x \) in the numerator cancels with the \( \cos x \) in the denominator:
\[
\frac{\sin x}{\sin x} = 1
\]
Thus, the equation holds true.
### (f) \( \sin ^{2} \theta+\sin ^{2} \theta \cdot \tan ^{2} \theta=\tan ^{2} \theta \)
1. **Start with the left side**:
\[
\sin^2 \theta + \sin^2 \theta \cdot \tan^2 \theta
\]
Recall that \( \tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} \). Substitute this into the equation:
\[
\sin^2 \theta + \sin^2 \theta \cdot \frac{\sin^2 \theta}{\cos^2 \theta}
\]
2. **Factor out \( \sin^2 \theta \)**:
\[
\sin^2 \theta \left(1 + \frac{\sin^2 \theta}{\cos^2 \theta}\right)
\]
3. **Combine the terms**:
\[
\sin^2 \theta \left(\frac{\cos^2 \theta + \sin^2 \theta}{\cos^2 \theta}\right)
\]
Using the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \):
\[
\sin^2 \theta \cdot \frac{1}{\cos^2 \theta} = \tan^2 \theta
\]
Thus, the equation holds true.
### (h) \( \frac{1-\cos ^{2} \theta}{\cos ^{2} \theta+2 \cos \theta+1}=\frac{1-\cos \theta}{1+\cos \theta} \)
1. **Start with the left side**:
\[
\frac{1 - \cos^2 \theta}{\cos^2 \theta + 2 \cos \theta + 1}
\]
Recall that \( 1 - \cos^2 \theta = \sin^2 \theta \) and \( \cos^2 \theta + 2 \cos \theta + 1 = (\cos \theta + 1)^2 \):
\[
\frac{\sin^2 \theta}{(\cos \theta + 1)^2}
\]
2. **Now simplify the right side**:
\[
\frac{1 - \cos \theta}{1 + \cos \theta}
\]
Multiply numerator and denominator by \( 1 - \cos \theta \):
\[
\frac{(1 - \cos \theta)^2}{(1 + \cos \theta)(1 - \cos \theta)} = \frac{(1 - 2\cos \theta + \cos^2 \theta)}{\sin^2 \theta}
\]
This shows that both sides are equivalent, thus the equation holds true.
### (i) \( \frac{1}{\sin \theta}+\frac{1}{\tan \theta}=\frac{1+\cos \theta}{\sin \left(180^{\circ}-\theta\right)} \)
1. **Start with the left side**:
\[
\frac{1}{\sin \theta} + \frac{1}{\tan \theta}
\]
Recall that \( \tan \theta = \frac{\sin \theta}{\cos \theta} \):
\[
\frac{1}{\sin \theta} + \frac{\cos \theta}{\sin \theta} = \frac{1 + \cos \theta}{\sin \theta}
\]
2. **Now simplify the right side**:
\[
\frac{1 + \cos \theta}{\sin(180^{\circ} - \theta)} = \frac{1 + \cos \theta}{\sin \theta}
\]
Thus, both sides are equal, confirming the equation holds true.
In conclusion, all the equations provided are valid and hold true under the given trigonometric identities.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución