Pregunta
upstudy study bank question image url

(An important result to remember) (d) \( \frac{\tan x \cdot \cos x}{\sin x}=1 \) (f) \( \sin ^{2} \theta+\sin ^{2} \theta \cdot \tan ^{2} \theta=\tan ^{2} \theta \) (h) \( \frac{1-\cos ^{2} \theta}{\cos ^{2} \theta+2 \cos \theta+1}=\frac{1-\cos \theta}{1+\cos \theta} \) (i) \( \frac{1}{\sin \theta}+\frac{1}{\tan \theta}=\frac{1+\cos \theta}{\sin \left(180^{\circ}-\theta\right)} \)

Ask by Burton Carrillo. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

All the given trigonometric equations are valid and hold true based on the identities used.

Solución

Let's analyze and simplify each of the given equations step by step. ### (d) \( \frac{\tan x \cdot \cos x}{\sin x}=1 \) 1. **Start with the left side**: \[ \frac{\tan x \cdot \cos x}{\sin x} \] Recall that \( \tan x = \frac{\sin x}{\cos x} \). Substitute this into the equation: \[ \frac{\frac{\sin x}{\cos x} \cdot \cos x}{\sin x} \] 2. **Simplify**: The \( \cos x \) in the numerator cancels with the \( \cos x \) in the denominator: \[ \frac{\sin x}{\sin x} = 1 \] Thus, the equation holds true. ### (f) \( \sin ^{2} \theta+\sin ^{2} \theta \cdot \tan ^{2} \theta=\tan ^{2} \theta \) 1. **Start with the left side**: \[ \sin^2 \theta + \sin^2 \theta \cdot \tan^2 \theta \] Recall that \( \tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} \). Substitute this into the equation: \[ \sin^2 \theta + \sin^2 \theta \cdot \frac{\sin^2 \theta}{\cos^2 \theta} \] 2. **Factor out \( \sin^2 \theta \)**: \[ \sin^2 \theta \left(1 + \frac{\sin^2 \theta}{\cos^2 \theta}\right) \] 3. **Combine the terms**: \[ \sin^2 \theta \left(\frac{\cos^2 \theta + \sin^2 \theta}{\cos^2 \theta}\right) \] Using the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ \sin^2 \theta \cdot \frac{1}{\cos^2 \theta} = \tan^2 \theta \] Thus, the equation holds true. ### (h) \( \frac{1-\cos ^{2} \theta}{\cos ^{2} \theta+2 \cos \theta+1}=\frac{1-\cos \theta}{1+\cos \theta} \) 1. **Start with the left side**: \[ \frac{1 - \cos^2 \theta}{\cos^2 \theta + 2 \cos \theta + 1} \] Recall that \( 1 - \cos^2 \theta = \sin^2 \theta \) and \( \cos^2 \theta + 2 \cos \theta + 1 = (\cos \theta + 1)^2 \): \[ \frac{\sin^2 \theta}{(\cos \theta + 1)^2} \] 2. **Now simplify the right side**: \[ \frac{1 - \cos \theta}{1 + \cos \theta} \] Multiply numerator and denominator by \( 1 - \cos \theta \): \[ \frac{(1 - \cos \theta)^2}{(1 + \cos \theta)(1 - \cos \theta)} = \frac{(1 - 2\cos \theta + \cos^2 \theta)}{\sin^2 \theta} \] This shows that both sides are equivalent, thus the equation holds true. ### (i) \( \frac{1}{\sin \theta}+\frac{1}{\tan \theta}=\frac{1+\cos \theta}{\sin \left(180^{\circ}-\theta\right)} \) 1. **Start with the left side**: \[ \frac{1}{\sin \theta} + \frac{1}{\tan \theta} \] Recall that \( \tan \theta = \frac{\sin \theta}{\cos \theta} \): \[ \frac{1}{\sin \theta} + \frac{\cos \theta}{\sin \theta} = \frac{1 + \cos \theta}{\sin \theta} \] 2. **Now simplify the right side**: \[ \frac{1 + \cos \theta}{\sin(180^{\circ} - \theta)} = \frac{1 + \cos \theta}{\sin \theta} \] Thus, both sides are equal, confirming the equation holds true. In conclusion, all the equations provided are valid and hold true under the given trigonometric identities.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

Did you know that trigonometric identities have been used by astronomers since ancient times? These identities helped scholars in many civilizations, from the Greeks to the Indians, calculate celestial positions, leading to breakthroughs in navigation and timekeeping. They weren't just solving math problems; they were charting the heavens! In today’s world, these identities find applications in various fields, such as engineering, physics, and computer graphics. For instance, in engineering, trigonometric identities are fundamental in analyzing wave patterns, signal processing, or constructing mechanical systems. So the next time you utter those identities, remember they’re not just numbers and symbols; they’re tools driving innovations!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad