Question 1 In \( 2013,16.4 \% \) of Tanzanians had access to electricity. What is the probability that for a random sample of 10 Tanzanians, 2 have access to electricity? Round to four decimal places. Answer Check
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To find the probability that exactly 2 out of 10 Tanzanians have access to electricity when \( p = 0.164 \), we can use the binomial probability formula: \[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \] where \( n = 10 \), \( k = 2 \), and \( p = 0.164 \). Calculating it step by step: 1. \( \binom{10}{2} = \frac{10!}{2!(10-2)!} = 45 \) 2. \( p^k = (0.164)^2 \approx 0.026896 \) 3. \( (1-p)^{n-k} = (0.836)^8 \approx 0.362280 \) Now plugging these values into the formula: \[ P(X = 2) = 45 \times 0.026896 \times 0.362280 \approx 0.4392 \] Rounding to four decimal places, the probability is \( P(X = 2) \approx 0.4392 \).
