For the given function and value of \( y \), find the corresponding value(s) of \( x \) : \( \begin{array}{ll}\text { a } y=x^{2}+6 x+10 & \text { when } y=1\end{array} \) b \( y=x^{2}+5 x+8 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To find the corresponding value of \( x \) for \( y = 1 \) in the equation \( y = x^2 + 6x + 10 \), we substitute \( y \) with 1: \[ 1 = x^2 + 6x + 10 \] Rearranging gives us: \[ x^2 + 6x + 9 = 0 \] Factoring this we get: \[ (x + 3)^2 = 0 \] This implies: \[ x + 3 = 0 \quad \Rightarrow \quad x = -3 \] Thus, when \( y = 1 \), \( x \) corresponds to the unique value \( -3 \). For the second equation, with \( y = x^2 + 5x + 8 \), we still set \( y = 1 \): \[ 1 = x^2 + 5x + 8 \] Rearranging leads us to: \[ x^2 + 5x + 7 = 0 \] To solve this quadratic equation, we can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = 5, c = 7 \): \[ x = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 1 \cdot 7}}{2 \cdot 1} \] \[ x = \frac{-5 \pm \sqrt{25 - 28}}{2} \] \[ x = \frac{-5 \pm \sqrt{-3}}{2} \] \[ x = \frac{-5 \pm i\sqrt{3}}{2} \] Thus, the values of \( x \) for the second equation give us complex solutions. The results of the two sets provide fascinating examples of how different quadratic equations can have either real or complex solutions, showcasing the rich tapestry of algebra!
