Pregunta
upstudy study bank question image url

Question 1 A solid circular shatt with diameter D is subjected to a bending moment of 40 kNm , and the permissible bending stress is not to exceed 50 MNm . Find the diameter of the shatt \( \mathrm{I}=\frac{\boldsymbol{a} \mathrm{D}^{4}}{64} \) for a solid circular shaft (A) 201 mm (B) 8.15 mm (C) 81.5 mm (D) 378 mm

Ask by Pritchard Bowen. in Singapore
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The diameter of the shaft should be 201 mm.

Solución

We are given a solid circular shaft with a bending moment M = 40 kNm and a maximum (permissible) bending stress σ₍ₘₐₓ₎ = 50 MN/m². We wish to find the diameter D such that the bending stress does not exceed the limit. Step 1. Convert units as needed. • M = 40 kNm. Since 1 kNm = 10³ N·m and 1 m = 10³ mm,   M = 40 × 10³ N·m = 40 × 10³ × 10³ N·mm = 40 × 10⁶ N·mm. • σ₍ₘₐₓ₎ = 50 MN/m² = 50 N/mm² (since 1 MN/m² = 1 N/mm²). Step 2. Write the bending stress expression for a beam (or shaft):   σ = (M·c) / I For a solid circular shaft,   • The moment of inertia is I = (π D⁴) / 64.   • The distance from the neutral axis to the outer surface is c = D/2. Substitute these into the bending stress formula:   σ = (M · (D/2)) / (π D⁴/64)     = M · (D/2) · (64/(π D⁴))     = (32 M) / (π D³) Step 3. Set the bending stress equal to the permissible stress and solve for D:   (32 M) / (π D³) = σ₍ₘₐₓ₎ Rearrange to solve for D³:   D³ = (32 M) / (π σ₍ₘₐₓ₎) Substitute the given numbers:   D³ = (32 × 40×10⁶ N·mm) / (π × 50 N/mm²) Calculate the numerator:   32 × 40×10⁶ = 1.28×10⁹ N·mm Now plug in:   D³ = (1.28×10⁹) / (50π)     = 1.28×10⁹ / (157.08)  [using π ≈ 3.1416]     ≈ 8.15×10⁶ mm³ Step 4. Find D by taking the cube root:   D = ∛(8.15×10⁶) Recognize that 200³ = 8×10⁶ and 201³ is approximately 8.12×10⁶, so:   D ≈ 201 mm Step 5. Compare with the multiple-choice options:   (A) 201 mm  (B) 8.15 mm  (C) 81.5 mm  (D) 378 mm The correct answer is (A) 201 mm.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the diameter of the shaft, apply the bending stress formula: \[ \sigma = \frac{M c}{I} \] Where \( M \) is the bending moment, \( c \) is the distance from the neutral axis to the outer fiber (\( \frac{D}{2} \)), and \( I \) is the moment of inertia. Given \( I = \frac{\pi D^4}{64} \) and rewriting the bending stress equation, you can solve for \( D \): \[ \frac{M \cdot \frac{D}{2}}{\frac{\pi D^4}{64}} \leq 50 \text{ MN/m}^2 \] Substituting the values, you will eventually find out that the diameter \( D \) works out to be 201 mm, corresponding to option (A). For extra fun, consider this: if our bending scenario was a battle between iron and steel, the iron may have great tensile strength, but when it comes to bending, the steel often wins by being more ductile, allowing it to absorb and disperse energy better. Who knew your shaft had such a tale of strength! Curiously, in engineering design, the interplay of forces isn’t just technical; it’s much like a dance! Every structure or mechanical component has its own 'dance moves' adapted to balance loads without crumpling under the pressure, much like ensuring dancers don’t collide during a performance!

preguntas relacionadas

Latest Engineering Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad