Calculate the dot product of \( \vec{u}=<-10,20,-13> \) and \( \vec{v}=<-5,0,-2> \) Show all steps.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To calculate the dot product of two vectors \( \vec{u}=<-10,20,-13> \) and \( \vec{v}=<-5,0,-2> \), we follow these steps: 1. **Identify the components**: - The vector \( \vec{u} \) has components \( u_1 = -10 \), \( u_2 = 20 \), \( u_3 = -13 \). - The vector \( \vec{v} \) has components \( v_1 = -5 \), \( v_2 = 0 \), \( v_3 = -2 \). 2. **Use the dot product formula**: The dot product \( \vec{u} \cdot \vec{v} \) is calculated using the formula: \[ \vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + u_3 v_3 \] 3. **Substitute the components**: \[ \vec{u} \cdot \vec{v} = (-10)(-5) + (20)(0) + (-13)(-2) \] 4. **Calculate each term**: - First term: \( (-10)(-5) = 50 \) - Second term: \( (20)(0) = 0 \) - Third term: \( (-13)(-2) = 26 \) 5. **Add the results together**: \[ \vec{u} \cdot \vec{v} = 50 + 0 + 26 = 76 \] Thus, the dot product \( \vec{u} \cdot \vec{v} \) is \( \boxed{76} \).
preguntas relacionadas
