Pregunta
upstudy study bank question image url

At Allegany College of Maryland freshman need to take a 100 level Math and English plus optional Philosophy course. In any quarter the college needs to make available 8 less English sections than Math sections. In any quarter student demand for the optional Philosophy course is half as many sections as English sections. Available classrooms limit the total sections of all three courses to 48 Given these constraints how many sections of each course should the college make available each quarte to meet demand? English sections Philosophy sections

Ask by Ward O'Quinn. in the United States
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The college should make available 24 Math sections, 16 English sections, and 8 Philosophy sections.

Solución

To solve the problem, we can set up a system of equations based on the constraints provided. Let: - \( M \) = number of Math sections - \( E \) = number of English sections - \( P \) = number of Philosophy sections From the problem, we have the following constraints: 1. The college needs to make available 8 less English sections than Math sections: \[ E = M - 8 \] 2. The student demand for the optional Philosophy course is half as many sections as English sections: \[ P = \frac{1}{2}E \] 3. The total sections of all three courses must not exceed 48: \[ M + E + P \leq 48 \] Now, we can substitute the expressions for \( E \) and \( P \) into the total sections equation. Substituting \( E \) from the first equation into the second equation: \[ P = \frac{1}{2}(M - 8) \] Now substituting \( E \) and \( P \) into the total sections equation: \[ M + (M - 8) + \frac{1}{2}(M - 8) \leq 48 \] Now simplify this equation: \[ M + M - 8 + \frac{1}{2}M - 4 \leq 48 \] \[ 2M + \frac{1}{2}M - 12 \leq 48 \] \[ \frac{5}{2}M - 12 \leq 48 \] \[ \frac{5}{2}M \leq 60 \] \[ M \leq 24 \] Now, since \( M \) must be a whole number, the maximum number of Math sections is 24. Now we can find the corresponding values for \( E \) and \( P \): 1. If \( M = 24 \): \[ E = M - 8 = 24 - 8 = 16 \] \[ P = \frac{1}{2}E = \frac{1}{2}(16) = 8 \] Now we check the total: \[ M + E + P = 24 + 16 + 8 = 48 \] This satisfies the total sections constraint. Thus, the college should make available: - **Math sections (M)**: 24 - **English sections (E)**: 16 - **Philosophy sections (P)**: 8 These values meet all the constraints provided in the problem.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve this problem, let's denote the number of Math sections as \( M \), English sections as \( E \), and Philosophy sections as \( P \). Based on the constraints given: 1. The college needs to make 8 less English sections than Math sections: \( E = M - 8 \) 2. The demand for Philosophy sections is half of the English sections: \( P = \frac{1}{2}E \) 3. The total sections available for all three courses are limited to 48: \( M + E + P \leq 48 \) Substituting the equations into the total sections constraint: \[ M + (M - 8) + \frac{1}{2}(M - 8) \leq 48 \] This simplifies to: \[ M + M - 8 + \frac{1}{2}M - 4 \leq 48 \] Combining terms yields: \[ \frac{5}{2}M - 12 \leq 48 \] Adding 12 to both sides results in: \[ \frac{5}{2}M \leq 60 \] Multiplying by \(\frac{2}{5}\): \[ M \leq 24 \] Using \( M = 24 \): - \( E = 24 - 8 = 16 \) - \( P = \frac{1}{2}(16) = 8 \) So, the college should offer **24 Math sections**, **16 English sections**, and **8 Philosophy sections** each quarter to meet the demand! Happy studying! 😊

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad