Pregunta
upstudy study bank question image url

The angle of inclination from the base of skyscraper A to the top of skyscraper B is approximately \( 10.7^{\circ} \). If skyscraper B is 1433 fee Assume the bases of the two buildings are at the same elevation. The distance from skyscraper A to skyscraper B is (Round to two decimal places as needed.)

Ask by Chandler Barber. in the United States
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The distance from skyscraper A to skyscraper B is approximately 436.34 feet.

Solución

Given: - The angle of inclination from the base of skyscraper A to the top of skyscraper B is \( 10.7^{\circ} \). - The height of skyscraper B is 1433 feet. Let's denote: - The distance from skyscraper A to skyscraper B as \( d \) feet. We can use trigonometry to solve this problem. The tangent of the angle of inclination is equal to the ratio of the opposite side (height of skyscraper B) to the adjacent side (distance from skyscraper A to skyscraper B). So, we have: \[ \tan(10.7^{\circ}) = \frac{1433}{d} \] We can solve for \( d \) by rearranging the equation and calculating the value. Calculate the value by following steps: - step0: Calculate: \(\tan\left(10.7\right)\) The tangent of \(10.7^{\circ}\) is approximately 3.284141. Now, we can solve for the distance \(d\) using the equation: \[ 3.284141 = \frac{1433}{d} \] Let's solve for \(d\). Calculate the value by following steps: - step0: Calculate: \(\frac{1433}{3.284141}\) - step1: Convert the expressions: \(\frac{1433}{\frac{3284141}{1000000}}\) - step2: Multiply by the reciprocal: \(1433\times \frac{1000000}{3284141}\) - step3: Multiply: \(\frac{1433\times 1000000}{3284141}\) - step4: Multiply: \(\frac{1433000000}{3284141}\) The distance from skyscraper A to skyscraper B is approximately 436.34 feet.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the distance from skyscraper A to skyscraper B, we can use the tangent function, which relates the angle of inclination to the opposite and adjacent sides of a right triangle. The formula is: \[ \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} \] Here, \(\theta = 10.7^\circ\) and the height (opposite side) is 1433 feet. We can rearrange the formula to find the adjacent side (the distance from skyscraper A to B): \[ \text{adjacent} = \frac{\text{opposite}}{\tan(\theta)} = \frac{1433}{\tan(10.7^\circ)} \] Calculating this gives: \[ \text{adjacent} \approx \frac{1433}{0.1875} \approx 7647.94 \text{ feet} \] So, the distance from skyscraper A to skyscraper B is approximately \(7647.94\) feet. If you’re curious, similar trigonometric functions were used in ancient civilizations, like the Egyptians and Greeks, to construct monumental architectures and navigate the stars! They relied on angles and distances to create their awe-inspiring temples and pyramids. Today, architects and engineers leverage these same principles, alongside advanced technology like CAD software and site-specific data analysis, to design everything from skyscrapers to bridges. Understanding the angles and distances helps ensure structures are not only beautiful but also safe and sound!

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad